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Abstract

In this thesis we introduce a notion of graphs approximating actions of
finitely generated groups on metric and measure spaces. We systematically
investigate expansion properties of said graphs and we prove that, under
mild conditions, a sequence of graphs approximating a fixed action ρ forms
a family of expanders if and only if ρ is expanding in measure.

We subsequently prove that the notion of expansion in measure for mea-
sure-preserving actions is equivalent to the well studied notion of spectral
gap. This enables us to rely on a number of known results to construct
numerous new families of expander (and superexpander) graphs.

Proceeding in our investigation, we show that the graphs approximating
an action Γ y X are uniformly quasi-isometric to the level sets of the
associated warped cone OΓ(X). Warped cones are ‘cone like’ structures
that were introduced by J. Roe to construct examples of metric spaces with
interesting coarse geometry (it has recently been shown that they violate
the coarse Baum-Connes conjecture). The existence of such a relation
between approximating graphs and warped cones has twofold advantages:
on the one hand it implies that warped cones arising from actions that are
expanding in measure coarsely contain families of expanders, on the other
hand it provides a geometric model for the approximating graphs allowing
us to study the geometry of the expander thus obtained.

The rest of the work is devoted to the study of the coarse geometry of
warped cones (and approximating graphs). We do so in order to prove
rigidity results which allow us to prove that our construction is flexible
enough to produce a number of non coarsely equivalent new families of
expanders. As a by-product, we also show that some of these expanders
enjoy some rather peculiar geometric properties, e.g. we can construct
expanders that are coarsely simply connected.
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Chapter 1

Introduction

In order to better explain the circumstances that brought me to develop this thesis
the way it is, I decided to introduce the results I obtained and the related concepts
in chronological order.1 Possibly, this is not the most efficient way to present these
contents, but I think that it is worth following this approach for the sake of drawing a
clearer picture of the framework where they developed.

Baum–Connes conjecture(s)

Given a locally compact topological group G, P. Baum and A. Connes defined an
assembly map from the K-theory of a (sort of) classifying space of G to the K-theory
of the reduced C∗-algebra of G. They then conjectured that this assembly map
is an isomorphism [BC00, BCH94]. This conjecture was extended in various ways,
for example by considering K-theories with non-trivial coefficients (Baum–Connes
conjecture with coefficients), by constructing an analogue of the assembly map for
coarse geometries of metric spaces instead of classifying spaces of groups (coarse
Baum–Connes conjecture) or by considering different C∗-algebras (e.g. considering
C∗max one gets the maximal Baum–Connes conjecture).

This suite of conjectures has been a huge driving force for the last couple of
decades. In fact, the existence of such an isomorphism between those seemingly
unrelated objects would yield far reaching consequences. To start with, this would
provide a way for computing K-theories of C∗-algebras (a notoriously hard thing to
do); but it would also bear vastly important consequences on the study of manifolds.
Indeed, (some instances of) the Baum–Connes conjecture can be seen as an analytic

1Unfortunately, I am only familiar with a part of the whole story. For this reason, my exposition
is bound to provide only a partial account of the developments in this subject(s).
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analogue of the Borel conjecture, and the injectivity of the assembly map for a discrete
group G implies that G satisfies the Novikov conjecture on higher signatures.

Currently, the Baum–Connes conjecture(s) have been proved for large classes of
groups, but some counterexamples have also been found [HLS02]. In either way, some
of these advances were based on the (non)existence of coarse embeddings into Banach
spaces.

Coarse embeddings in Banach spaces

A standard technique for studying complicated spaces is to try to embed them into
some larger and better behaved spaces. This technique turned out to be useful in the
study of the Baum–Connes conjecture(s) as well, where the role of the larger space is
played by Banach spaces.

The study of different notions of embeddings of metric spaces into Banach spaces
has been carried out since the late 50’s. It was known that every separable metric space
is homeomorphic to a subset of L2(0, 1), but in [Enf70] Enflo provided an example of
a separable metric space which does not embed into a Hilbert space with a uniform
homeomorphism. Apparently unaware of Enflo’s result, Gromov later asked [Gro93,
p218] whether every separable metric space embeds into a Hilbert space coarsely (see
Subsection 2.6.3 for a definition).

It was proved by G. Yu in [Yu00] that the coarse Baum–Connes conjecture holds
true for every metric space which coarsely embed into a Hilbert space. In particular,
this allowed him to deduce that the assembly map is injective for finitely generated
groups that admit such an embedding. This breakthrough gave new relevance to the
study of coarse embeddings into Banach spaces. In fact, at the time of Yu’s result
there were no known examples of separable metric spaces which could not be coarsely
embedded into Hilbert spaces.

Building on Enflo’s ideas, Dranishnikov, Gong, Lafforgue and Yu constructed in
[DGLY02] a separable metric space that does not coarsely embed into an Hilbert space.
Their example consisted of a family of locally finite graphs with growing degrees and
therefore it did not have bounded geometry (see Subsection 2.1.3 for a definition).

In order to find possible counterexamples to the injectivity of the assembly map on
finitely generated groups (and hence counterexamples to the Novikov conjecture), it
was necessary to find finitely generated groups whose Cayley graph could not coarsely
embed into Hilbert spaces. A natural approach for doing so was to look for groups
whose Cayley graph contained a coarsely embedded copy of a space which was known
to be impossible to coarsely embed in a Hilbert space. For this purpose the graphs in

2



[DGLY02] were of no use, as their unbounded geometry prevented them from being
coarsely embedded into any finite degree Cayley graph. Still, it was pointed out by
Gromov that the reason why those graphs could not coarsely embed into Hilbert spaces
had to do with their expansion properties. He thus linked the coarse Baum–Connes
conjecture with the major research topic of expander graphs.

Families of expanders

A family of expanders is a sequence of finite graphs that have vertex sets of increasing
cardinality, are sparse (i.e. have uniformly bounded degrees), but are at the same time
highly connected (i.e. their Cheeger constant is bounded from below), see Subection
2.7.2 for the precise definition. Such notion was first defined in the 70s, and since then
it motivated a great deal of research. Indeed, the existence of families of expander
graphs is a fundamental tool to solve some concrete problems in computer science and
in the study of computational complexity.

The existence of families of expanders was first proved by Pinsker [Pin73] by
probabilistic means. Indeed, he managed to show that random sequences of graphs
with bounded degrees are expanders with high probability. Still, to be able to use
the expander graphs in concrete problems it was necessary to have explicit examples,
and it turned out that defining explicit families of expanders was quite a challenge.
This is because computing bounds for the Cheeger constant of a graph is an extremely
difficult task in general.

The first concrete examples of expander graphs were built by Margulis [Mar73]
using the machinery of Kazhdan’s property (T). This construction made it clear
that in order to construct more examples it was necessary to use a combination of
techniques from different branches of mathematics. Indeed, the modern approaches to
the theory of expander graphs use deep results of combinatorics, algebra and analysis.
The necessity for such a diverse set of tools boosted the study of families of expanders
not only for their concrete applications but also for their intrinsic interest. The pay-off
was a number of important implications in other unexpected subjects as well (e.g.
geometry and topology). See the surveys [HLW06] and [Lub12] for a great introduction
to expander graphs and their applications.

Counterexamples to the Baum–Connes conjecture

The application of the theory of expander graphs that is more relevant for our discussion
is given by the role they play in disproving the (coarse) Baum–Connes conjecture.
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In [Mat97], Matoušek proved that a family of expander graphs cannot be coarsely
embedded into a Hilbert space (this was also realised by Gromov in [Gro03]). This fact
led Higson to produce a first counterexample to the coarse Baum-Connes conjecture
[Hig99].

As opposed to the spaces built in [DGLY02], expander graphs do have bounded
geometry and it it could hence be possible to coarsely embed them into the Cayley
graph of a finitely generated group. This was indeed done by Gromov in [Gro03]
(see also [AD08]). There he used probabilistic methods to build finitely generated
groups that contain a ‘weakly’ embedded family of expanders and therefore do not
coarsely embed into Hilbert spaces (it was later proved by Osajda that there exist
groups containing isometrically embedded families of expanders [Osa14]). These
groups were then used in [HLS02] to produce counterexamples to (some versions of)
the Baum-Connes conjecture.

Without entering into details, we will just report that the counterexamples to the
coarse Baum-Connes conjecture built in [Hig99, HLS02] are based on the existence,
for a coarse disjoint union of expanders X, of non-compact ghost projections for the
Roe algebra C∗(X).

Warped cones

The idea of the warped cone construction was introduced by J. Roe in [Roe95] (see
also [Roe96]) as a way of producing examples of metric spaces satisfying interesting
coarse geometric properties and, in particular, to produce new counterexamples to
the coarse Baum–Connes conjecture. While passing relatively unnoticed in the years
following their introduction, warped cones have lately attracted a great deal of interest
and lively research; starting with [DN17], many papers followed in quick succession:
[Saw15, NS17, Vig16, Saw17a, SW17, WW17, dLV17, Saw17b, FNvL17] and finally
[Vig17a]. We will now take some time to explore this construction as explained in
[Roe05].

Given an action by diffeomorphisms of a finitely generated group Γ = 〈S〉 on
a compact Riemannian manifold (M,%), the warped cone associated with it is the
infinite metric space

(
OΓ(M), δΓ

)
obtained from the infinite Riemannian cone

(
M ×

[1,∞), t2% + dt2
)
by warping the metric. That is, the metric δΓ is obtained from

the cone metric t2%+ dt2 by imposing the condition that for every element s in the
generating set S the distance between any two points of the form (x, t) and (s · x, t)
be at most 1. Note that the warped metric δΓ depends on the choice of generating set.
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Still, the coarse geometry of OΓ(M) does not depend on this choice (see Section 8.1
for more on this).

One of the key features of this construction is that it can be used to produce
metric spaces with very diverse coarse geometries, and all these spaces are going to
have bounded geometry. In particular, among other things Roe was able to prove
that if Γ is a finitely generated subgroup of a compact Lie group G such that the
warped cone arising from the action by left multiplication Γ y G coarsely embeds
into a Hilbert space, then Γ must have the Haagerup property.2 We remark here that
Roe subsequently asked whether the converse was true:

Question 1.0.1 (Roe). Is it true that if a finitely generated subgroup Γ of a Lie group
G has the Haagerup property then the warped cone OΓ(G) coarsely embeds into a
Hilbert space?

We will be able to give a negative answer to the above shortly (Corollary 1.0.6).

Note that from Roe’s result it follows that it is possible to construct warped cones
that do not coarsely embed into Hilbert spaces (it is enough to choose a subgroup Γ < G

with property (T)). He was also hoping to prove that under some circumstances warped
cones could be used to produce new counterexamples to the coarse Baum–Connes
conjecture —remember that by this time the only known counterexamples to that
conjecture are those built using families of expanders.

Strong evidence that it should be possible to construct such counterexamples was
given by Drut̨u and Nowak in [DN17]. In fact, they managed to prove that if the action
Γ yM has a spectral gap (see Subection 2.4.4) then the Roe algebra C∗(OΓ(M)) has
non-compact ghost projections (this was one of the key steps in [DGLY02]). Very
recently, Sawicki announced that such warped cones do indeed violate the coarse
Baum–Connes conjecture [Saw17c].

This was what was known at the time I started investigating the geometry of
warped cones. Since all the known counterexamples to the coarse Baum–Connes
conjecture were based on the presence of expanders, it was natural to try to clarify
the relation between expanders and warped cones. In this thesis I make this relation
explicit, and, for the most part of it, I build on these ideas to investigate the geometry
of actions, expanders and warped cones.

2The Haagerup property is an analytic version of amenability (which we shall not define). All
amenable groups and free groups have the Haagerup property. See e.g. [DK17b] for more on this.

5



Approximating graphs

Let again Γ = 〈S〉 be a finitely generated group acting by diffeomorphisms on a
compact Riemannian manifold3 M (see Section 2.3 for some basics of Riemannian
geometry). Fixing a parameter r > 0, we now wish to “approximate” this action
up to error ≈ r with a finite graph. The idea for doing so is to choose a finite
partition P of M into many (regular) regions R ⊂M that have comparable sizes (i.e.
diameter, volume and eccentricity: see Section 2.1 for precise definitions) and so that
the diameter of these regions is approximately r. We then define an approximating
graph at scale r as the graph Gr(Γ yM) whose vertex set is the set of regions in the
partition P , and so that two regions R,R′ ∈ P are linked by an edge in Gr(Γ yM) if
there exists a generator s ∈ S so that the intersection s(R) ∩R′ is not trivial (formal
definitions are in Subsection 5.1.1).

Note that the the graph Gr(Γ yM) is not uniquely defined, as it depends both
on the choice of the partition P and on the generating set S. Still, different choices
produce coarsely equivalent graphs (uniformly in the parameter r). It makes therefore
sense to study the coarse geometry of the approximating graphs Gr(Γ yM) as r > 0

varies.
Consider now the warped cone OΓ(M) associated with the same action, and for

every t ≥ 1 let OtΓ(M) denote the level set at height t. That is, OtΓ(M) is the subset
M × {t} ⊂ OΓ(M) equipped with the restriction of the warped metric δΓ. One of the
key observations from which this work originated is the following result.

Proposition A (Proposition 8.2.6). As t varies in [1,∞), the metric space OtΓ(M)

and the finite graph Gt−1

(
Γ yM

)
are naturally uniformly coarsely equivalent.

The above result clarifies the interplay between approximating graphs and warped
cones. This is in turn fruitful in two directions: on the one hand it allows one to study
warped cones by looking at finite approximations of the action; and on the other hand
it allows to study the “geometry” of the approximations of the action Γ y M (and
hence the action itself) by studying the geometry of the associated warped cone.

Actions expanding in measure

The second key notion that we introduce in this thesis is that of measure expanding
action (Definition 5.2.1). This mimics the behaviour of expander graphs in the setting

3All the results stated in the rest of the introduction are actually proved in a much greater
generality in this thesis. Here we restricted to smooth actions on manifolds to free our exposition
from the technical details.
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of actions on probability spaces. In the specific case of actions of groups on Riemannian
manifolds (equipped with their Riemannian volume), we say that the action Γ yM is
α-expanding for some α > 0 if we have that for every measurable subset A ⊂M with
Vol(A) ≤ 1

2
Vol(M) the measure of the union of the images of A under the generators

of Γ is at least α-times larger than the measure of A:

Vol

(⋃

s∈S

s(A)

)
≥ (1 + α) Vol(A).

The action is expanding in measure if it is α-expanding for some α > 0.
We can then prove the following characterisation:

Theorem B (Theorems 5.2.12 and 7.1.3). For any sequence of parameters rk → 0,
the sequence of approximating graphs Grk(Γ yM) is a family of expanders if and only
if the action Γ yM is expanding in measure.

The idea of the proof of the above theorem is that the condition on measure-ex-
pansion is equivalent to producing a lower bound on the Cheeger constants of the
approximating graphs. Then one only has to show that graphs approximating an
action by diffeomorphisms on a compact manifold have uniformly bounded degree.

The freedom on the choice of the sequence rk and the partition implies that we
can build expanders with vertex sets of arbitrary cardinality:

Corollary 1.0.2 (Proposition 7.1.8). For every unbounded increasing sequence of
cardinalities nk ∈ N there exists a family of expanders where the k-th graph has
precisely nk vertices.

Combining Proposition A and Theorem B we obtain the following complete
characterisation of expansion in warped cones.

Corollary 1.0.3 (Theorem 8.2.7). For any unbounded sequence tk → ∞, the level
sets OtkΓ (M) are coarsely equivalent to a sequence of expanders if and only if the action
Γ yM is expanding in measure.

I should now point out that, for some of the applications, we are also going to
consider approximating graphs that are quite different in spirit from those used so
far (see e.g. Section 7.2). Indeed, up to this point it was implicit that we were fixing
an action on a compact space and then using the approximating graphs to obtain
finer and finer approximations of that action. Still, if one was simply looking for
sequences of graphs they could also allow for the action to vary and consider sequences
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of approximating graphs of the form G(Γi yMi) with i ∈ N. In this case (the proof
of) Theorem B still implies that if the actions are expanding in measure uniformly
then this sequence is a family of expanders (the converse implication does not need to
hold).

Application I: a large number of examples of expanders

Theorem B can be used to produce a great number of families of expanders, as suffices
to prove that an action is expanding in measure to be able to use it to construct
explicit expanders.

The easiest way to construct examples of measure expanding actions is by consid-
ering the case of measure preserving actions i.e. actions Γ yM such that for every
γ ∈ Γ the map γ : M →M preserves the Riemannian volume. Indeed, in this setting
we have the following characterisation:

Theorem C (Proposition 6.1.2). A measure preserving action Γ yM is expanding
in measure if and only if it has a spectral gap.

This criterion has various consequences. To begin with, recall that Drut̨u and
Nowak proved that warped cones admit non-compact ghost projections when the
action has spectral gap, i.e. precisely when Theorem B implies that the action is
expanding in measure. We can hence apply Proposition A and Theorem B to deduce
that the counterexamples to the coarse Baum–Connes conjecture constructed using
warped cones [Saw17c] always contain families of expanders. Note however that, a
priori, the presence of a coarsely embedded family of expanders in a metric space
does not necessarily imply that the metric space violates the coarse Baum–Connes
conjecture.

Corollary 1.0.4. The level sets of the warped cones which are candidate counterex-
amples to the coarse Baum–Connes conjecture are coarsely equivalent to a family of
expanders.

On a different note, Theorem C allows us to use well developed analytical and
representation theoretical tools to produce many examples of expanding actions. For
example, one can immediately deduce that every ergodic action of a group with
Kazhdan property (T) will be expanding in measure.

More generally, a number of natural measure preserving actions are known to have
spectral gaps (see e.g. [BG07, BdS14, CG11, Sha00, Bek03, GJS99]). To mention an
example that will return over and over in this thesis, it is proved in [BG07] that if
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a, b ∈ SO(3,Q) are two matrices with algebraic coefficients that generate a non-abelian
free group, then their action by rotations on S2 has spectral gap. Whence we get:

Corollary 1.0.5. The level sets of the warped cones O〈a,b〉
(

SO(3,R)
)
and O〈a,b〉

(
S2
)

are coarsely equivalent to families of expander graphs.

Note that the free group does have the Haagerup property. Still, we already
explained that expanders cannot be coarsely embedded into Hilbert spaces. This
implies a strongly negative answer to Question 1.0.1 (this answer was previously and
independently obtained also by Nowak and Sawicki in [NS17]).

Corollary 1.0.6. There exist subgroups of compact Lie groups Γ < G that have the
Haagerup property and so that the warped cones OΓ(G) do not coarsely embed into
Hilbert spaces.

We would also like to point out that there is an old conjecture by Gamburd,
Jakobson and Sarnak [GJS99] stating that if G is a compact simple Lie group, then for
a generic k-tuple (g1, . . . , gk) ∈ Gk the action by left multiplication of the generated
group 〈g1, . . . , gn〉 on G has a spectral gap. By Corollary 1.0.3, this conjecture can be
equivalently restated as follows:

Conjecture 1.0.7 (Gamburd–Jakobson–Sarnak). For a generic k-tuple (g1, . . . , gk)

in a compact simple Lie group G, the level sets of the warped cone O〈g1,...,gn〉(G) form
a family of expanders.

When leaving the world of measure preserving actions, one would expect that it
should be even easier to produce examples of measure expanding actions. Still, in
that case most of the analytic tools that we could use are not available any more and,
interestingly enough, at the moment I hardly know of any provably expanding action
which is not measure preserving (the only exceptions that I am aware of are some
actions on Poisson boundaries and the work of Bourgain and Yehudayoff [BY13]).

Application II: a more general approach to expanders

One of the advantages of the approach to families of expanders via approximating
graphs, is that it somehow unifies various strategies for constructing expanders.

The idea that when a graph comes naturally from an action on a measure space it
should be possible estimate its Cheeger constant by studying expanding properties
of the action has already been in the air for a while. In fact, specific instances of
it have been used more or less implicitly in many works on expanders (e.g. [Mar73,
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GG81, Sha97, BY13]). These techniques clearly fall under the umbrella of graphs
approximating actions.

Another classical and extremely successful way of producing expanders is by
considering Cayley graphs of finite groups (e.g. a sequence of Cayley graphs of finite
quotients of an infinite finitely generated group Γ). In some sense, this can also be
seen as a special case of approximating graphs. Indeed, the Cayley graph Cay(Γ, S)

can be seen as the graph approximating the action by (right) multiplication of Γ on
itself, where the finite partition of Γ is simply the discrete one i.e. every region is a
single element of Γ. Then, proving that a sequence of finite Cayley graphs Cay(Γi, Si)

forms a family of expanders is equivalent to proving that the Γi-actions are uniformly
expanding in measure (here we are using the uniform measure on each Γi).

In particular, if the groups Γi are given by finite quotients Γi = Γ/Ni and S is
a generating set of Γ, then the graphs Cay(Γ/Ni, S) form a family of expanders if
and only if the actions Γ/Ni x Γ are uniformly expanding in measure—this can also
be rephrased by saying that the action of Γ on the profinite group obtained as the
completion Γ with respect to the groups Ni (equipped with an appropriate measure)
must be expanding. In this setting, the approach with approximating graphs reduces
to the well-known fact that such a sequence is a family of expanders if and only if the
sequence of subgroups Ni has property (τ). See Subsection 2.8.3 and Remark 6.1.7
for more on this.

This was to say that approximating graphs cover most of the known constructions
of expanders (the major construction that does not seem fall into this family is that of
zig-zag products [RVW02]). It should still be emphasized that approximating graphs
also produce a multitude of completely new families of expanders, many of which have
rather interesting and unexpected geometric properties coming from the link between
approximating graphs and warped cones (continue reading for more on this).

Application III: superexpanders4

We already discussed at length that expanders do not coarsely embed into a Hilbert
space. Still, it is a deep open problem whether there exist expanders that can
be coarsely embedded into some superreflexive Banach space (a Banach space is
superreflexive if and only if it is isomorphic to a uniformly convex Banach space, see
Section 2.4 for more on Banach spaces). This question was first asked by V. Lafforgue
and, besides being a natural question to ask, it has meaningful implications both

4The results here discussed are joint work with Tim de Laat.
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in view of the Baum–Connes conjecture (one could try to extend Yu’s proof of the
conjecture to spaces that coarsely embed into more general Banach spaces) and in
theoretical computer science.

In [Pis10], Pisier introduced the class of uniformly curved Banach spaces and
showed that expanders are not coarsely embeddable into such spaces. This was a
great step forward, as there are no known examples of superreflexive Banach spaces
that are not uniformly curved. However, the aforementioned problem remains open.

We shall say that a family of expanders is a superexpander (Definition 2.7.11)
if it does not coarsely embed into any uniformly convex Banach space. We remark
that, despite the results of Pisier, only a small number of families of expanders are
known to be superexpanders. The first examples of superexpanders were obtained by
Lafforgue as Cayley graphs of quotients of a group with Lafforgue’s strong Banach
property (T) [Laf08]. The main other source of superexpanders, obtained by means of
a combinatorial construction, was provided by Mendel and Naor in [MN14].

It turns out that approximating graphs are a good tool to produce numerous
more examples of superexpanders. Indeed, it is relatively simple to prove that if
an action Γ y M has a strong Banach-valued spectral gap (see Subsection 2.4.5)
then the approximating graphs Gr(Γ y M) cannot coarsely embed into uniformly
convex Banach spaces (Proposition 5.4.3). We can hence use such actions to obtain
superexpanders.5

The easiest way to produce actions with such strong Banach-valued spectral gap
is to consider ergodic actions of groups with Lafforgue strong Banach property (T)
(this technique was also suggested in [NS17]). For the sake of concreteness, one can
prove (see Section 6.3) that for every d ≥ 5 the group Γd := SO(d,Z[1

5
]) is an infinite

group with strong Lafforgue property (T). Whence we obtain the following:

Theorem D (de Laat–V; Corollary 7.1.6). For every d ≥ 5 and every infinitesimal
sequence rk → 0, both sequences of graphs Grk

(
Γd y SO(d,R)

)
and Grk

(
Γd y Sd−1

)

give superexpanders.

Geometric invariants of actions

Besides its interest in relation with the Baum–Connes conjecture, the warped cone
construction is also intriguing in view of its relation with the study of dynamics of
actions. In fact, the coarse geometry of warped cones encodes information about both
the base space M and the action of the group Γ. This seems to suggest that it is

5This was also shown in [Saw17a].
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worthwhile to further investigate how much information on the action it is possible to
recover studying warped cones. Especially because we already know that it is possible
to find geometric characterisations of some properties of the action, an example of
this behaviour being precisely the fact that the action is expanding if and only if the
level sets are coarsely equivalent to expanders. See also [Saw17b, FNvL17] for more
instances of this interplay between geometric and dynamic properties.

It is worth remarking that there have already been a number of attempts to
meaningfully codify information about actions into some geometric or topological
object (one example being the notion topological entropy). Finding such a construction
could lead to unexpected bridges between geometry and dynamical systems, from
which there would surely be much to gain.

It is still too soon to know whether warped cones could be such link because not
much research went into them yet. In particular, from what I could see there have
not yet been meaningful instances of dynamical problems solved by studying of the
geometry of warped cones. Besides, it might even be the case that it is not quite the
coarse geometry of the warped cone that should play the main role, but some other
weaker (or stronger) sort of geometric information.

At any rate, it is surely well worth to study the coarse geometry of warped cones.
Indeed, even if there was no substantial return in terms of dynamical information it
would still clarify the structure of these important counterexamples to Baum–Connes
and the expanders obtained from them. This is what we are going to do in the rest of
this thesis.

The coarse geometry of warped cones I: local structure6

Let Γ y M be an action by isometries on a compact Riemannian manifold—we
remark here that the results of this section and application are the only ones for which
it is actually essential for M to be a manifold and not a wilder geometric object. We
now wish to study the local geometry of the warped cone OΓ(M) around a point
(x, t) ∈M × [1,∞) as t gets larger.

More precisely, we fix a radius r > 0, a point x ∈M and we study the geometry
of the ball of radius r centred on the point (x, t) as t goes to infinity. If the action
of Γ is free at x (i.e. if γ · x = x for some γ ∈ Γ then γ is the identity element) it is
easy to show that the ball of radius r centred at (x, t) is actually isometric to the ball
of radius r centred at the point ((x, t), e) in the product O(M)× Cay(Γ, S), where

6The material in this section and the subsequent application is also joint work with de Laat.
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O(M) denotes the (unwarped) infinite Riemannian cone and the product is equipped
with the `1-norm. Moreover, it is a basic exercise of Riemannian geometry to check
that, as t increases, the ball of radius r centred at (x, t) in O(M) becomes more and
more ‘similar’ to a ball of radius r in the Euclidean space Ed+1 (i.e. Rd+1 equipped
with the Euclidean metric), where d = dim(M).

Summing up we see that, as soon as one considers level sets ‘sufficiently high up’,
the local geometry of the warped cone OΓ(M) close to points where the action of Γ

is free will just look like the local geometry of Ed+1 × Cay(Γ, S). At this point we
can adapt an argument of Khukhro and Valette [KV17] to prove the following rigidity
result.

Theorem E (de Laat–V; Theorem 8.3.3 and Appendix B). Let Γ yM and Λ y N be
essentially free actions by isometries on Riemannian manifolds. If the associated warped
cones are coarsely equivalent then Γ× Zdim(M)+1 is quasi-isometric to Λ× Zdim(N)+1.

Theorem E gives us the first tools to show that some warped cones cannot be
coarsely equivalent (a similar result was also obtained by Sawicki [Saw17b]). In
particular this result applies very well to actions of groups that are relatively rigid in
the sense that they are not quasi-isometric to other groups with ‘Euclidean factors of
the wrong dimension’.

Application IV: genuinely different expanders

Here and in the sequel, we say that two sequences of metric spaces (Xk)k∈N and (Yk)k∈N

are coarsely equivalent if there exists coarse equivalences Xk ∼ Yk with constants
uniform in k. Note that using this definition it is easy to produce examples of
sequences of expanders that are not coarsely equivalent, for example by carefully
selecting appropriate subsequences from a family of expanders (see Appendix A). Still,
such examples are in some sense trivial; e.g. because they could very well have coarsely
equivalent subsequences. Also in view of this fact, we say that two sequences of metric
spaces are coarsely disjoint (Definition 8.2.3) if they do not admit coarsely equivalent
subsequences.

It follows from (the proof of) Theorem E that if Γ y M and Λ y N are two
actions by isometries and Γ× Zdim(M) is not quasi-isometric to Λ× Zdim(N) then for
any two unbounded sequences tk and sk the families of level sets OtkΓ (M) and OskΛ (N)

are coarsely disjoint. Rigidity results for high rank lattices [KL97] imply the following:

Corollary 1.0.8. The superexpanders arising from graphs approximating the actions
Γd y SO(d,R) or Γd y Sd−1 as in Theorem D are coarsely disjoint as d ≥ 5 varies.
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Moreover, the understanding of the local geometry given by Theorem E can be
further specialised to prove that the above superexpanders are coarsely disjoint from
every family of superexpanders obtained as cayley graphs of quotients of groups with
Lafforgue’s strong Banach property (T).

The coarse geometry of warped cones II: coarse fundamental
group

A very different approach to coarse rigidity for warped cones is inspired by [DK17a]
and makes use of discrete fundamental groups. The discrete fundamental group at
scale θ of a metric space (X, d) was defined by Barcelo, Capraro and White [BCW14]
as the group π1,θ(X) which is the analogue of the fundamental group of X where
continuous loops are replaced by closed θ-paths (i.e. finite sequences of points with
d(xi, xi+1) ≤ θ) which are considered up to θ-homotopies (see Section 3.1 for a detailed
discussion).

From our perspective, the usefulness of the discrete fundamental groups is that the
study of the groups π1,θ(X) for (families of) metric spaces can provide some strong
coarse invariants. Indeed, even if it is not true in general that π1,θ(X) is invariant
under coarse equivalences, it is easy to show that a coarse equivalence X → Y induces
a homomorphism of π1,θ(X) to π1,θ′(Y ) where the parameter θ′ is explicitly bounded in
term of θ and the constants of the coarse equivalence. This information can sometimes
be enough to prove that such a coarse equivalence cannot exist.

It turns out that it is possible to explicitly compute the discrete fundamental
groups of the level sets of warped cones of actions of free groups (the case of more
general groups then follows, as any action can be seen as a quotient of a non-faithful
action of a free group). In particular, we prove the following:

Theorem F (Theorem 8.4.1). For every θ ≥ 1 there exists a t0 large enough so that
for every t ≥ t0 we have

π1,θ

(
OtFS(M)

) ∼=
(
π1(M)o FS

)/⟪Kθ⟫
where Kθ can be described explicitly and depends on the set of elements w ∈ FS for
which the homeomorphism w : M →M has fixed points.

As sample consequences of Theorem F we report the following.

Corollary 1.0.9 (Corollary 8.4.4). If d ≥ 3 is odd and FS y Sd−1 is any action by
rotations, then

π1,θ

(
OtFS

(
Sd−1

))
= {0}
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for every t and θ ≥ 1.

Corollary 1.0.10 (Corollary 8.4.8). If Γ is finitely presented, Γ yM is a free action
and π1(M) = {0}, then

π1,θ

(
OtΓ(M)

) ∼= Γ

for every θ and t large enough.

Note that from Theorem F it follows that, once θ is fixed, the discrete fundamental
group of the level set OtFS(M) does not depend on t (as soon as it is large enough). In
many instances, it is also the case that (the limit for large t) of the group π1,θ

(
OtFS(M)

)

does not even depend on θ � 1. When this happens, we say that the warped cone
has stable discrete fundamental group and we denote such limit by π1,∞

(
FS y M

)

(in general, we can define this group as the direct limit of the discrete fundamental
groups). It is the case that if a finitely generated group Γ acts freely on M , then
the warped cone has stable discrete fundamental group if and only if Γ is finitely
presented.

This discrete fundamental group ‘at scale infinity’ can be used as a ‘global’ coarse
invariant.7 In fact we have:

Theorem G (Theorem 8.5.9). If (the level sets of) two warped cones OΓ(M) and
OΛ(N) are coarsely equivalent and OΓ(M) has stable discrete fundamental group, then
OΛ(N) has stable discrete fundamental group as well and

π1,∞
(
Γ yM

) ∼= π1,∞
(
Λ y N

)
.

Application V: even more different expanders with unexpected
properties

Since approximating graphs are uniformly coarsely equivalent to level sets of warped
cones, their discrete fundamental groups will be (roughly) the same as those of
such level sets. This immediately implies the existence of coarsely simply connected
expanders and superexpanders:

7Very recently, the discrete fundamental group of warped cones was also independently investigated
by Fisher, Nguyen and van Limbeek [FNvL17]. They restricted their attention to free minimal
actions by isometries on homogeneous spaces, and, in that restricted settings, they managed to use
these invariants to prove some surprisingly powerful rigidity results (up to finite quotients, coarsely
equivalent warped cones must come from actions that are conjugate). This allowed them to explicitly
produce continua of coarsely disjoint warped cones (and hence expanders and superexpanders).
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Corollary 1.0.11. Let d ≥ 3 be an odd number. For every expanding action by
rotations FS y Sd−1 and infinitesimal sequence rk → 0, the sequence graphs Grk

(
FS y

Sd−1
)
is a family of coarsely simply connected expander graphs.

In particular, if d ≥ 5 is odd, the superexpanders Grk
(
Γd y Sd−1

)
are coarsely

simply connected.

Moreover we also get the following peculiar behaviour:

Corollary 1.0.12. If a warped cone OΓ(M) has stable discrete fundamental group,
then any sequence of approximating graphs Grk

(
Γ yM

)
will have constant θ-discrete

fundamental group for every k and θ large enough.

Finally, the fact that the discrete fundamental groups of OtFS(M) do not depend
on t should be contrasted with the theorem of Delabie–Khukhro [DK17a] stating that
for every fixed θ and for any sufficiently small finite index subgroup Λk C Λ we have
π1,θ

(
Cay(Λ/Λk)

) ∼= Λk. This provides strong evidence that (level sets of) warped
cones are generally coarsely disjoint from sequences of Cayley graphs of finite quotients.
In particular, we can prove the following:

Theorem H (Theorem 8.6.1). If Λk Cf Λ is a nested residual sequence of finite
index normal subgroups and the sequence of Cayley graphs Cay

(
Λ/Λk, S

)
is coarsely

equivalent to a sequence of approximating graphs Grk
(
Γ yM

)
, then OΓ(M) has stable

discrete fundamental group if and only if Λ is finitely presented. Moreover, when this
is the case Λk

∼= π1,∞
(
Γ yM

)
for every k ∈ N large enough.

This result allows us to show that for various classes of groups and warped cones no
sequence of approximating graphs can be coarsely equivalent to a sequence of Cayley
graphs of finite quotients and vice versa. In particular, we obtain the following:

Theorem 1.0.13 (Corollary 8.6.8). The superexpanders Gtk
(
Γd y SO(d,R)

)
are

not coarsely equivalent to any sequence of Cayley graphs of finite (nested, residual)
quotients of a group Λ.
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Chapter 2

Preliminaries

This chapter is meant to be a reference chapter for the precise conventions and standard
results that will be used throughout the thesis. As such, it is not meant to be read
from the beginning to the end, but it will be referred to as needed in the exposition of
the original material.

2.1 Topologies, metrics and measures

Throughout the thesis, all the topological spaces that we will have to consider will be
metrisable, if not directly metric spaces. We will usually denote by X a metric space,
and we will sometimes write it as (X, d) when we want to stress that d is the metric
on it.

Given x ∈ X and r ≥ 0, we will denote by B(x, r) := {y ∈ X | d(x, y) < r} the
open ball of radius r centred at x and by B(x, r) := {y ∈ X | d(x, y) ≤ r} be the
closed ball. Note that the closed ball needs not to be the closure of an open ball, in
general. Recall that a metric space is proper if every closed ball is compact.

For a subset Y ⊆ X and a radius r ≥ 0 we denote by Nr(Y ) and N r(Y ) its open
and closed1 neighbourhoods of radius r:

Nr(Y ) =
{
x ∈ X

∣∣ ∃y ∈ Y, d(x, y) < r
}

=
⋃

y∈Y

B(y, r)

N r(Y ) =
{
x ∈ X

∣∣ ∃y ∈ Y, d(x, y) ≤ r
}

=
⋃

y∈Y

B(y, r).

We say that Y ⊂ X is discrete if for every y ∈ Y there exists an open neighbourhood
U ⊆ X such that Y ∩ U = {y}. The diameter of a set Y ⊆ X is diam(Y ) :=

sup{d(y, y′) | y, y′ ∈ Y }.
1The closed neighbourhood of a non compact set needs not be closed. We still call it closed

neigbourhood because “neighbourhood with a bar” sounds silly.
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2.1.1 General topology (for metric spaces)

A path on X is a continuous map γ : [0, 1] → X. We will usually denote by γ∗ the
reverse path γ∗(t) := γ(1 − t). We will often implicitly confound paths with their
images. The space X is path-connected if every two points in X can be joined by a
path. We will usually only deal with path connected spaces.

A free homotopy between two paths γ, γ′ : [0, 1] → X is a continuous function
H : [0, 1]× [0, 1]→ X whose restrictions to [0, 1]×{0} and [0, 1]×{1} coincide with γ
and γ′. A homotopy is a free homotopy that keeps the endpoints fixed, i.e. such that
the restrictions to {0} × [0, 1] and {1} × [0, 1] are constants. If X is path-connected,
every pair of paths are freely homotopic, but they need not be homotopic.

A closed path or loop in X is a path γ : [0, 1]→ X with γ(0) = γ(1) (equivalently, it
is a continuous mapping of the circle γ : S1 → X). Homotopies of loops coincide with
homotopies of paths, while free homotopy of loops differ from free homotopies of paths
in that they are not allowed to break the loops into open paths (i.e. H(0, t) = H(1, t)

for every t ∈ [0, 1]). We say that a loop is null-homotopic if it is homotopic to a
constant path or, equivalently, if it is freely homotopic to a constant path.

If γ and γ′ are two paths so that γ(1) = γ′(0), we denote by γγ′ the path obtained
concatenating them. The fundamental group based at x ∈ X is the group π1(X, x) of
closed paths based at x up to homotopy, equipped with the concatenation operation.
If X is path connected, the isomorphism class of its fundamental group does not
depend on the choice of x and we will sometimes simply denote it by π1(X).

The following material is mostly taken from [Sak13, Section 5.14].

Definition 2.1.1. The space X is locally path connected (shortened as l.p.c.) if for
every point x ∈ X and neighbourhood U of x there exists a neighbourhood x ∈ V ⊆ U

such that every two points in V are joined by a path in U . We say that X is uniformly
locally path connected (u.l.p.c.) if for every ε > 0 there exists a δ > 0 such that
for every x ∈ X any two points in B(x, δ) are connected by a path γ with image
completely contained in B(x, ε).

Remark 2.1.2. It is easy to show that if X is l.p.c. then its path-connected components
are both open and closed (a path-connected component is a maximal path-connected
subset). In particular, if X is also connected then it is path-connected.

Some authors use different definitions for l.p.c. spaces (e.g. by insisting that the
neighbourhood V be open). These notions are equivalent because of the following:
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Lemma 2.1.3. A space X is l.p.c. if and only if every point in X admits a neigh-
bourhood basis of path-connected open neighbourhoods.

Proof. The ‘if’ part of the statement is clear. For the ‘only if’ part, note that if X is
l.p.c. then every open subset of X is itself l.p.c. In particular, for every point x ∈ X
and open neighbourhood U of x, the space U will be l.p.c. It follows by Remark 2.1.2
that the connected component of U containing x will be a path-connected open
neighbourhood of x in U (and hence X).

Definition 2.1.4. The space X is semi-locally simply connected (s.l.s.c.) if for every
x ∈ X there exists a ε(x) > 0 small enough so that every loop with image contained
in B

(
x, ε(x)

)
is null-homotopic in X (but is not necessarily null-homotopic in the

ball). We say that X is uniformly semi-locally simply connected (u.s.l.s.c.) if it is
semi-locally simply connected and one can choose ε(x) to be constant (i.e. uniform
over x ∈ X).

Remark 2.1.5. We recall that semi-local simple connectedness is one of the weakest
conditions that allows one to prove that a space X admits a universal cover X̃.

Lemma 2.1.6. If X is compact and l.p.c (respectively, s.l.s.c) then it is u.l.p.c
(respectively, u.s.l.s.c).

Proof. Let X be compact and l.p.c. and fix ε > 0. Then, for every x ∈ X let δ(x) > 0

be the largest radius such that any two points in B(x, δ(x)) can be connected by a
path in B(x, ε). If X was not u.l.p.c., there would be a sequence of points xn such
that δ(xn)→ 0. By compactness, we can assume that the sequence xn converges to a
point x̄. There exists a δ̄ < ε

2
such that points in B(x̄, δ̄) are connected by a path in

B
(
x̄, ε

2

)
. But now we have that for every y ∈ B

(
x̄, δ̄

2

)
the radius δ(y) must be at least

δ̄
2
, which leads to a contradiction.
The same argument proves the analogous statement for s.l.s.c.

At one point we will need the fundamental group of an infinite product of topological
spaces. Curiously enough, all my standard references for general topology always
restrict their attention to products of finitely many spaces. I feel hence obliged to give
a sketch of proof for the following:

Lemma 2.1.7. Let (Xα, xα)α∈I be an arbitrary collection of pointed connected topo-
logical spaces. Then

π1

(∏
α∈IXα, (xα)α∈I

)
∼=
∏

α∈I

π1(Xα, xα).
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Sketch of proof. By the universal property of topological products, there is a bijection
between continuous maps f : Y →∏

α∈I Xα and products of continuous maps fα : Y →
Xα for α ∈ I. In particular, this yields a bijection

π1

(∏
α∈IXα, (xα)α∈I

)
←→

∏

α∈I

π1(Xα, xα)

Because loops are given by products of loops and homotopies are given by products of
homotopies. It is then enough to check that this bijection is a homomorphism, which
is easily done.

2.1.2 Lengths of paths and discrete paths

A continuous path γ : [0, 1]→ X is rectifiable if the supremum

|γ| := sup
{ n∑

i=1

d
(
γ(i− 1), γ(i)

)}

is finite, where the supremum is taken over any finite sequence of times 0 = t0 < · · · <
tn = 1 and n ∈ N. When this is the case, we say that |γ| is the length of γ (if γ is not
rectifiable then it is convenient to set |γ| = +∞).

Note that the length of a path joining two points x, y ∈ X is at least d(x, y). A
metric space is a path-metric space if for every pair of points x, y ∈ X the distance
d(x, y) is equal to the infimum of the lengths of paths connecting x to y. If a path
between x and y realises their distance |γ| = d(x, y), it is said to be a geodesic. A
metric space is geodesic if every two points are joined by a geodesic (in particular, a
geodesic metric space is a path metric space).

Definition 2.1.8. We say that (X, d) has homotopy rectifiable paths if every continuous
path in X is homotopic to a path of finite length.

Remark 2.1.9. If every two points in a metric space X are connected by a rectifiable
path, then one can defined an induced path-metric by defining the distance between
two points to be the infimum of the lengths of the paths connecting them. This might
cause some confusion when considering subsets of metric spaces, as the induced metric
and the induced path-metric will generally be different.

Let now θ > 0 be a fixed a parameter. A discrete path at scale θ (or θ-path) is
a θ-Lipschitz map Z : [n] → X where [n] is the subset {0, 1, 2, . . . , n} ⊂ R with the
subset metric. Equivalently, Z can be seen as an ordered sequence of points (z0, . . . , zn)

in X with d(zi, zi+1) ≤ θ; we will use both notations in the sequel.
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The space X is said to be θ-connected if any two points of X are connected via
a θ-path. A θ-connected metric space is θ-geodesic if any two points z, z′ ∈ X are
connected via a θ-path (z0, . . . , zn) such that d(z, z′) = d(z0, z1) + · · ·+ d(zn−1, zn).

2.1.3 Separated subsets and bounded geometry

Given ε > 0, we say that a subset Y of a metric space (X, d) is ε-separated if d(y, y′) ≥ ε

for every two y, y′ ∈ Y with y 6= y′. Note that if Y is ε-separated, then the balls
B(y, ε

2
) with y ∈ Y are all disjoint in X.

We say that Y is r-dense if the union of all the balls B(y, r) with y ∈ Y covers the
whole of X. We say that a subset Y ⊆ X is a (r, ε)-net if it is r-dense and ε-separated.
When letting r = ε, we will simply call (r, r)-nets r-nets.

Note that an r-separated set is maximal (with respect to the ordering given by the
inclusion) if and only if it is also r-dense. In particular, it follows from Zorn’s Lemma
that in every metric space there exist r-nets.

Definition 2.1.10. A metric space has bounded geometry if for every ε > 0 there is a
function fε : R+ → N such that every ball of radius r can be covered with fε(r) balls
of radius ε.

Remark 2.1.11. Note that a metric space X has bounded geometry if and only if every
ε-net Y ⊂ X in it admits a function fY : R+ → N such that every (closed) ball of
radius r in Y has at most fY (r) points.

2.1.4 Eccentricity and quasi-symmetries

A subset of a metric space is bounded if it has finite diameter. We define the eccentricity
of a bounded subset A of a metric space X as

ξ(A) := inf

{
R

r

∣∣∣∣ ∃x ∈ A such that B(x, r) ⊆ A ⊆ B(x,R)

}
.

Note that the eccentricity of a set is equal to the eccentricity of its closure.
Let η : [0,+∞) → [0,+∞) be a homeomorphism (i.e. a strictly increasing un-

bounded continuous function sending 0 to 0). A homeomorphism f : X → X is
η-quasi-symmetric if it satisfies

d
(
f(x), f(y)

)

d
(
f(x), f(z)

) ≤ η

(
d(x, y)

d(x, z)

)

for every choice of points z 6= x 6= y in X. We say that f is quasi-symmetric if it is
η-quasi-symmetric for some η : [0,∞)→ [0,∞).
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The intuitive meaning of quasi-symmetric homeomorphisms is that they are home-
omorphisms that send circles to ellipses of uniformly bounded eccentricity. In fact,
note that if f is η-quasi-symmetric and A ⊂ X is bounded, then the eccentricity of
the image f(A) is at most η(ξ(A)).

Bi-Lipschitz homeomorphisms are clearly quasi-symmetric. In particular, diffeo-
morphisms of a compact manifold are quasi-symmetric (Corollary 2.3.3).

2.1.5 Measures and measurable maps

We say that a subset A of a measure space (X, ν) is ν-null if it is measurable and
ν(A) = 0. It is ν-conull if X r A is ν-null.

Given two measures ν and ν ′ defined on the same σ-algebra of X, ν ′ is absolutely
continuous with respect to ν (denoted ν ′ � ν) if every ν-null subset of X is also
ν ′-null. The measures ν and ν ′ are equivalent if ν ′ � ν and ν � ν ′. If two measures
are equivalent we also say that they represent the same measure class.

If ν and ν ′ are σ-finite measures on X and ν ′ � ν, then there exists a measurable
function f : X → [0,∞) such that

ν ′(A) =

∫

A

f(x)dν(x).

Such function is unique up to ν-null sets and is called Radon-Nikodym derivative.
It is usually denoted by dν′

dν
. Note that ν and ν ′ are equivalent if and only if the

Radon-Nikodym derivative is strictly positive in a ν-conull set.
A map between measure spaces f : (X, ν)→ (Y, µ) is measurable if the preimage

of a measurable set is measurable. A measurable map defines a push forward measure
f∗ν on Y letting f∗ν(A) := ν

(
f−1(A)

)
for every measurable set A ⊆ Y .

A measurable map f : (X, ν) → (X, ν) is measure class preserving if f∗(ν) is
equivalent to ν. It is measure preserving if f∗ν = ν.

2.1.6 Borel measures

We will often consider topological (metric) spaces that are also equipped with a
measure ν. The measure ν is Borel if it is defined in the Borel σ-algebra. If not state
otherwise, the measure ν will always be a Borel measure. If we want to stress the fact
that X is a metric and measure space we denote it by (X, d, ν).

A measure ν on a Hausdorff topological space is a Radon measure if it is locally
finite (every point has a neighbourhood of finite measure) and inner regular (the
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measure of every measurable set A ⊆ X is equal to the supremum of the measures of
its compact subsets K ⊆ A). Most of the measures we will consider are Radon.

A Borel measure is regular if it is a Radon measure and it is also outer regular
(the measure of every measurable set A ⊆ X is equal to the infimum of the measures
of the open sets containing it).

Definition 2.1.12. A metric and measure space (X, d, ν) is doubling if there exists a
constant D such that

ν
(
B(x, 2r)

)
≤ Dν

(
B(x, r)

)

for every x ∈ X and every radius r > 0. The smallest such constant D is the doubling
constant of X.

2.2 Groups and actions

Throughout this manuscript, Γ and Λ will always denote discrete countable groups.
Moreover, we will usually only deal with finitely generated groups. When Γ is a finitely
generated group, we will usually denote by S a finite generating set Γ = 〈S〉. In the
sequel, the group Γ will usually by tacitly assumed to come together with a fixed
generating set S.

We denote by S−1 the set of inverses of elements in S, and we will consistently use
the notation S± and S±e to denote the sets S ∪ S−1 and S ∪ S−1 ∪ {e}, where e ∈ Γ is
the identity element.

For any set S, we denote by FS the free group generated by S. That is, FS is a
free group of rank |S| and it can be seen as the group of finite words with letters in
the alphabet S±. The set S is a natural generating set of FS.

2.2.1 Topological groups

When we do not require the group to be countable (e.g. when dealing with Lie
groups), we will usually denote it by G. Often, G will be a topological group (i.e. G
is a topological space and both the multiplication map (g, h) 7→ gh and the inverse
map g 7→ g−1 are continuous). A finitely generated group Γ can be considered as a
topological group with the discrete topology.

If a topological group is locally compact and Hausdorff, then it admits a unique
Haar measure up to rescaling. That is, there is a non-zero measure m defined on the
Borel σ-algebra of G such that for every measurable subset A ⊆ G

• m(gA) = m(A) for every g ∈ G (left invariant);
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• m(K) is finite for every compact K ⊆ G;

• m(A) = sup{m(K) | K ⊆ A compact} (inner regular);

• m(A) = inf{m(U) | A ⊆ U open} (outer regular).

Any measure having these properties must be equal to a multiple of m.
If a topological space X is locally compact and second countable (i.e. there exists

a countable basis for the topology), then it admits an exhaustion by compact sets.
That is, there exists a sequence of compact sets Kn ⊆ X such that Kn ⊆

◦
Kn+1

and X =
⋃
n∈NKn. It follows that if G is a locally compact second countable

Hausdorff topological group then its Haar measure is σ-finite and hence one can apply
fundamental results such as Fubini’s Theorem.

2.2.2 Actions on spaces

We will denote a left action ρ of a group G on a set X by ρ : G y X, or simply
Gy X if we do not need to specify a name for it.2 Similarly, we denote right actions
by X x G :ρ or X x G. If we refer to an action without specifying whether it is left
or right we usually mean that it is a left action.

We will usually denote the image of a point x ∈ X under the action of an element
g ∈ G by g · x. Depending on the context, it will be convenient to use different
notation, such as g(x) or ρ(g)x (the latter is especially useful when one wishes to keep
the action ρ in the notation to prevent confusion with other actions).

Given an action Gy X and subsets H ⊆ G and A ⊆ X, we denote by H · A the
union

H · A :=
⋃

g∈H

g(A) ⊆ X.

If G is a topological group and X is a topological space, we will implicitly assume
that an action of G on X is a continuous action (i.e. it is given by a continuous map
G × X → X). An action of Γ on a topological space X is by homeomorphisms if
g : X → X is a homeomorphism for every g ∈ G.

If (X, d) is a metric space, an action G y X is by isometries (resp. bi-Lips-
chitz maps, quasi-symmetric maps) if g : X → X is an isometry (resp. bi-Lipschitz,
quasi-symmetric) for every g ∈ G. Note that in the case of bi-Lipschitz actions we do
not require that all the maps share the same bi-Lipschitz constants, and similarly for

2For linear actions on Banach spaces (i.e. a representation) we will generally use the symbol π
instead of ρ.
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actions by quasi-symmetric map. Note also that if g : X → X is Lipschitz for every
g ∈ G then it is also bi-Lipschitz.

If (X, ν) is a measure space, an action Gy X is by measurable maps if the map
g : X → X is measurable for every g ∈ G. If G is a topological group, an action is
measurable if it is defined by a measurable map G×X → X, where G is equipped with
the Borel σ-algebra. Note that if Γ is a discrete group then an action is measurable if
and only if it is by measurable maps.

An action by measurable maps on a measure space (X, ν) is measure preserving
(resp. measure class preserving) if g∗ν = ν (resp. g∗ν is equivalent to ν) for every
g ∈ G. If an action on (X,µ) is measure preserving (resp. measure class preserving)
then µ is said to be invariant (resp. quasi-invariant).

Given an action G y X, for every g ∈ G we denote its fixed points set by
Fix(g) = {x ∈ X | g(x) = x}. For a subset H ⊆ G we let Fix(H) =

⋂
g∈G Fix(g). An

action G y X is free if Fix(g) = ∅ for every g ∈ G r {e}. If X is a measure space,
the action is essentially free if Fix(g) has measure 0 for every g ∈ Gr {e}. An action
is faithful if Fix(g) 6= X for every g ∈ Gr {e}.

Given a subset A ⊆ X, its stabiliser is the subgroup

StabG(A) = {g ∈ G | g(A) = A},

and when G is clear form the context we simply denote it by Stab(A). A subset A ⊂ X

is G-invariant if Stab(A) = G. If the action is by measurable maps, a measurable set
A is essentially G-invariant if g(A) = A up to measure zero sets (i.e. the symmetric
difference g(A)4A is a ν-null set) for every g ∈ G. Similarly, a measurable function
f : X → R is G-invariant if f(x) = f(g ·x) everywhere and it is essentially G-invariant
if f(x) = f(g · x) ν-almost everywhere.

Definition 2.2.1. An action by measurable maps on a measure space Gy (X, ν) is
ergodic if every G-invariant measurable set A ⊆ X is either ν-null or ν-conull.

It is easy to show that if Γ is a countable group then an action Γ y X is ergodic
if and only if every essentially Γ-invariant set is either null or conull. This is also true
in greater generality:

Theorem 2.2.2. Let G be a locally compact second countable Hausdorff topological
group and let Gy (X, ν) be a measurable action. Then the following are equivalent:

(i) Gy X is ergodic;
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(ii) every essentially G-invariant subset is either ν-null or ν-conull;

(iii) every G-invariant function is constant almost everywhere;

(iv) every essentially G-invariant function is constant almost everywhere.

See [BM00, Theorem 1.3] for a proof.3

Given two actions Γ1 y X1 and Γ2 y X2 and a function ϕ : Γ1 → Γ2, we say that
a map F : X1 → X2 is ϕ-equivariant if F (g · x) = ϕ(g) ·F (x) for every x ∈ X1, g ∈ Γ1.
Morphisms in the category of actions on sets are given by ϕ-equivariant maps where
ϕ is a group homomorphism.

2.2.3 Cayley graphs and word lengths

Given a finitely generated group Γ and a finite generating set S, the (left) Cayley
graph is the (undirected, simplicial) graph4 Cay(Γ, S) having one vertex for every
element of Γ and such that if h and g are two distinct elements in Γ then {g, h} is an
edge in Cay(Γ, S) if and only if h = gs for some s ∈ S±.

The natural path-metric on Cay(Γ, S) coincide with the (left) word metric on Γ.
That is, given an element g ∈ Γ its word length |g| is the length of the shortest word
representing it

|g| = min
{
n
∣∣ g = s1 · · · sn with s1, . . . , sn ∈ S±

}
.

The (left) word distance between two elements g, h ∈ Γ is defined as |h−1g|.
The action by left multiplication of Γ on itself induces an action by isometries on

its Cayley graph. On the contrary the (right) action by right multiplication does not
induce isometries on the Cayley graph (it does not send edges to edges), but it has
bounded displacement. That is, given h ∈ Γ then d(g · h, g) = |h| for every g ∈ Γ and,
in particular, it is bounded.

Similarly, we define the right Cayley graph as the graph Cayr(Γ, S) with Γ as
vertex set and with an edge {g, h} if and only if h = sg for some s ∈ S±. This time it
is the action by right multiplication to induce an action by isometries on Cayr(Γ, S),
while the action by left multiplication has bounded displacement. The path metric
on Cayr(Γ, S) coincides with the right word distance, i.e. the distance defined by
(g, h)→ |gh−1|.

3In [BM00] the action is also assumed to be measure class preserving, but this hypothesis is not
necessary for the proof.

4See Section 2.7 for our conventions on graphs.
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Remark 2.2.3. The map sending g to g−1 for every g ∈ G defines a natural isomorphism
between Cay(Γ, S) and Cayr(Γ, S). Still, it is necessary to pay attention to whether
the Cayley graph being used is the left or right one because it is important to know
which one between the left and right multiplication induces an action by isometries.

2.2.4 Warped metrics

Let S be a finite set of homeomorphisms of a metric space (X, d).

Definition 2.2.4. The warped metric induced on X by S is the largest metric δS
such that

• δS(x, y) ≤ d(x, y) for every x, y ∈ X;

• δS(x, s(x)) ≤ 1 for every s ∈ S.

Lemma 2.2.5. The warped metric δS is well-defined and for every pair of points x
and y in X we have

δS(x, y) = inf
{
n+

n∑

i=0

d(xi, yi)
}

(2.1)

where the infimum is taken over n ∈ N and (n + 1)-tuples x0, . . . , xn and y0, . . . , yn

such that x = x0, y = yn and for every i = 1, . . . , n there exists a si ∈ S± such that
xi = si(yi−1).

Moreover, if X is proper then the infimum is actually a minimum.

Proof. It is clear that the expression on the RHS of (2.1) defines a metric on X that
satisfies the requirements of Definition 2.2.4. It follows that δS exists and we have

δS(x, y) ≥ inf
{
n+

n∑

i=0

d(xi, yi)
}
.

On the other hand, for every pair of (n + 1)-tuples x0, . . . , xn and y0, . . . , yn with
x = x0, y = yn and xi = si(yi−1) we have

δS(x, y) ≤ δS(x0, y0) + δS(y0, x1) + δS(x1, y1) + · · ·+ δS(xn, yn)

≤ d(x0, y0) + 1 + d(x1, y1) + · · ·+ d(xn, yn) = n+
n∑

i=0

d(xi, yi),

which proves the other inequality.
Let now X be a proper metric space, x, y be any two points in X and let

x
(k)
0 , . . . , x

(k)
n(k) and y

(k)
0 , . . . , y

(k)
n(k) be sequences of tuples converging to the infimum
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in (2.1). Since n(k) is bounded, we can assume it constant n(k) ≡ n. Since (X, d)

is proper and y
(k)
0 is contained in the closed ball B(X,d)

(
x0, δS(x, y)

)
, there exists a

subsequence that converges to a point ȳ0. Also, since S is finite we can assume that
s

(k)
1 does not depend on k, and since the action is by homeomorphisms we deduce that
the sequence x(k)

1 = s1 · y(k)
0 converges to the point x̄1 := s1(ȳ0). Iterating this process,

we produce a subsequence such that the (n+ 1)-tuples converge to two (n+ 1)-tuples
x̄0, . . . , x̄n and ȳ0, . . . , ȳn that realise the infimum in (2.1).

The choice of the set of homeomorphisms S naturally induces an action of the free
group FS on X. Vice versa, given an action of a finitely generated group Γ and a
finite generating set S of Γ, one can consider the induced warped metric δS. When we
want to stress that a warped metric δS is coming from a group action, we will often
denote it by δΓ. This is a slight abuse of notation as the metric depends on the choice
of the generating set. This is one of the reasons why we use the tacit convention that
finitely generated groups are thought of as equipped with a fixed finite generating set.

Remark 2.2.6. For any choice of a point x ∈ X, the orbit map Γ → X defined by
g 7→ g(x) gives rise to a 1-Lipschitz map of the right Cayley graph to the warped
space Cayr(Γ, S)→ (X, δΓ). Indeed, two vertices g, h ∈ Γ are joined by an edge if and
only if h = s±g with s ∈ S, hence δΓ(g(x), h(x)) = δΓ

(
g(x), s±(g(x)

)
≤ 1.

When dealing with actions by isometries, the warped distance has a more explicit
formula.

Lemma 2.2.7. If Γ = 〈S〉 is acting by isometries on (X, d), then

δS(x, y) = inf
g∈Γ

(
d(x, g(y)) + |g|

)

where |g| is the word length of g in Γ.

Proof. For any g ∈ Γ, let |g| = n and let s1 · · · sn be a word in S± such that
g = s1 · · · sn. Then letting

x0 = x y0 = s1 · · · sn(y)

x1 =y1 = s2 · · · sn(y)

x2 =y2 = s3 · · · sn(y)

. . .

xn =yn = y,

yields (n+1)-tuples as in Lemma 2.2.5. Thus we have δS(x, y) ≤ infg∈Γ

(
d(g(x), y)+|g|

)
.
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On the other hand, given (n + 1)-tuples x0, . . . , xn and y0, . . . , yn and elements
s1, . . . , sn as in Lemma 2.2.5, let

z0 =y0

z1 =s−1
1 (y1)

. . .

zn =s−1
1 · · · s−1

n (yn).

Then, since the action is by isometries, we have:
n∑

i=0

d(xi, yi) = d(x0, y0) + d(x1, y1) + · · ·+ d(xn, yn)

= d(x0, z0) + d
(
s1(y0), s1(z1)

)
+ · · ·+ d

(
sn(yn−1), sn · · · s1(zn)

)

= d(x0, z0) + d(z0, z1) + · · ·+ d(zn−1, zn) ≥ d(x, zn)

and, as zn = g(y) for g = s−1
1 · · · s−1

n , the converse inequality follows.

2.2.5 Limits and co-limits of groups

In this subsection G will simply denote an abstract (i.e. non topological) group. A
directed poset is a set I with a partial order ≤ such that for every pair of elements
i, j ∈ I there exists an element k ∈ I such that i ≤ k and j ≤ k.

Definition 2.2.8. A direct system of groups over a directed poset (I,≤) is the data
of a family of groups (Gi)i∈I and homomorphisms fij : Gi → Gj for every ordered pair
i ≤ j in I, such that

• fii = idGi for every i ∈ I,

• fik = fjk ◦ fij for every ordered triple i ≤ j ≤ k in I.

The direct limit of such a direct system is the group

lim−→G/Gi :=
∐

i∈I

Gi

/
∼

obtained quotienting the disjoint union of the groups Gi by the relation ∼ defined
by imposing that xi ∈ Gi is equivalent to xj ∈ Gj if and only if there exists an index
k ∈ I larger than i and j such that fik(xi) = fjk(xj).
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It follows from the definition that for every i ∈ I, the inclusion of Gi in the union∐
i∈I Gi induces a homomorphism ϕi : Gi → lim−→Gi. Moreover, if we are given a family

of group homomorphisms ψi : Gi → H such that ψi = ψj ◦ fij for every i ≤ j, then
there exists a unique homomorphism ψ : lim−→Gi → H such that ψi = ψ ◦ ϕi for every
i ∈ I (i.e. the direct limit is a co-limit in the category of groups).

Lemma 2.2.9. Given a group G, a directed poset (I,≤) and a family of normal
subgroups Gi CG such that Gi ⊆ Gj for every i ≤ j, then the quotients G/Gi form a
direct system of groups and the direct limit is given by the quotient

lim−→Gi = G
/(⋃

i∈IGi

)
.

Sketch of proof. It is clear that the groups G/Gi together with the quotient maps form
a direct system. Let G∞ :=

⋃
i∈I Gi; the projections pi : G/Gi → G/G∞ are coherent

with the direct system and therefore—by the universal property of the direct limit—we
obtain homomorphism p : lim−→G/Gi → G/G∞ that commutes with the maps pi. Since
pi is surjective, so is p.

As the direct limit is a quotient of
∐
G/Gi, an element in ker(p) is of the form

[xGi] for some i ∈ I and x ∈ G. Moreover, xGi is in the kernel of pi and therefore
x ∈ G∞. It follows that x ∈ Gj for some j ∈ J and hence [xGi] = [Gj] = e in
lim−→G/Gi.

Definition 2.2.10. An inverse system of groups over a directed poset (I,≤) is the
data of a family of groups (Gi)i∈I and homomorphisms fij : Gj → Gi for every ordered
pair i ≤ j in I, such that

• fii = idGi for every i ∈ I,

• fik = fij ◦ fjk for every ordered triple i ≤ j ≤ k in I.

The inverse limit (or projective limit) of such a direct system is the subgroup of
coherent elements in the direct product

∏
i∈I Gi:

lim←−Gi :=
{

(xi)i∈I
∣∣ xi = fij(xj) for every i ≤ j

}
⊆
∏

i∈I

Gi.

For every i ∈ I, the projection
∏

i∈I Gi → Gi induces a group homomorphism
ϕi : lim←−Gi → Gi. Moreover, if we are given a family of group homomorphisms
ψi : H → Gi such that ψi = fij ◦ ψj for every i ≤ j, then there exists a unique
homomorphism ψ : H → lim←−Gi such that ψi = ϕi ◦ ψ for every i ∈ I (i.e. the inverse
limit is a limit in the category of groups).
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Remark 2.2.11. In the sequel we will have to consider a direct system of groups Gθ

where the parameter θ ranges in the interval (0,+∞) equipped with the usual ordering
≤. Taking the direct limit lim−→Gθ is the natural limit process to consider as θ grows
to infinity. On the contrary, if we want to define the limit of the system as θ goes to 0

we have to use the inverse limit. Indeed, the correct poset to consider to define the
limit for θ → 0 would be (0,∞) equipped with the opposite ordering ≥, and in this
case the system of groups is not direct but inverse. Neatly enough, the notation helps
us as the limit for θ → 0 then becomes lim←−Gθ.

2.3 Riemannian geometry

In this section M will always be a connected smooth manifold, i.e. a second countable
topological space locally homeomorphic to Rn and equipped with a differentiable
structure coming from a C∞-atlas. The results we need are covered in most introductory
books on Riemannian geometry (e.g. [GHL12]).

2.3.1 Basic facts and definitions

Let M be a smooth manifold and for every x ∈M let TxM denote its tangent space
at x and let TM be the tangent bundle of M . A Riemannian metric tensor % on
M is choice of inner products %x : TxM × TxM → R for every x ∈ M that depends
smoothly on x. A Riemannian manifold (M,%) is a smooth manifold equipped with a
Riemannian metric tensor.

For every smooth path γ : [0, 1]→M , applying the differential of γ to the (positive)
unit vector defines a map

γ̇ : [0, 1]→TM
t 7−→dγt(1)

such that γ̇(t) ∈ Tγ(t)M for every t ∈ [0, 1]. The speed of a smooth γ is the function

t 7→ ‖γ̇(t)‖% :=
√
%γ(t)

(
γ̇(t), γ̇(t)

)
. The length γ is the integral of its speed

‖γ‖ :=

∫ 1

0

‖γ̇(t)‖%dt.

The distance between two points in M is defined to be the infimum of the lengths of
(piecewise) smooth curves connecting them. This defines a Riemannian metric d on
M . We will often denote Riemannian manifolds by (M,d), where d is the metric (not
the Riemannian tensor).
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Remark 2.3.1. Every smooth path γ : [0, 1]→M can be reparametrised so that it has
constant speed. Every smooth path also admits an arc length reparametrisation, i.e.
it can be made into a path γ : [0, ‖γ‖]→M of constant speed 1.

We will denote by En, Hn and Sn the n-dimensional Euclidean space,5 hyperbolic
space and sphere respectively. Given a Riemannian manifold (M,%) and any positive
constant t we denote by tM the Riemannian manifold (M, t2%) obtained rescaling the
Riemannian metric tensor.6 From the metric space point of view, this is equivalent to
rescaling the distance function by t.

IfM and N are differentiable manifolds with dim(N) ≤ dim(M), % is a Riemannian
metric tensor on M and F : N → M is a local embedding (i.e. a smooth map
such that the differential dxF is not singular at any point x ∈ N), then N can be
endowed with the pull-back Riemannian metric tensor F ∗% defined by F ∗%x(v, w) :=

%F (x)

(
dF (v)x, dF (w)x

)
.

Let (M,%) and (M ′, %′) be Riemannian manifolds with dim(M) ≤ dim(M ′). If
F : M →M ′ is a local embedding then it preserves the lengths of curves if and only if
% = F ∗%′. More in general, if we are given Riemannian metric tensors, the norm of
the differential of a smooth map F : (M,%)→ (M ′, %′) is well-defined

‖dFx‖ = sup
{
‖dFx(v)‖%′

∣∣ v ∈ TxM, ‖v‖% = 1
}

and we have:

Lemma 2.3.2. Let (M,%) and (M ′, %′) be Riemannian manifolds. If a local embedding
F : M →M ′ satisfies ‖dFx‖ ≤ L for every x ∈M , then F is an L-Lipschitz map.7

Sketch of proof. It is enough to note that for every smooth curve γ : [0, 1] → M we
have

‖F ◦ γ‖ =

∫ 1

0

‖d(F ◦ γ)t‖%′dt =

∫ 1

0

∥∥dFγ(t)(γ̇(t))
∥∥
%′
dt ≤

∫ 1

0

∥∥dFγ(t)

∥∥‖γ̇‖%dt.

Corollary 2.3.3. If F : (M,%)→ (M ′, %′) is a diffeomorphism such that both ‖dF‖
and ‖dF−1‖ are bounded by L, then it is L-bi-Lipschitz. In particular, if M is compact
then any self-diffeomorphism F : M →M is a bi-Lipschitz map.

5The Euclidean space En is just the vector space Rn equipped with the standard Euclidean metric.
We prefer to use the notation En to stress that we think of it as a metric space (as opposed to a
vector space).

6To rescale the metric by t one needs to rescale the metric tensor by t2.
7The converse is also true, but we will not need it.
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A Riemannian manifold (M,%) is naturally equipped with a Borel measure given
by the Riemannian volume. If A ⊂ M is a Borel set contained in a chart Ω of M ,
x1, . . . , xn are the local coordinates of Ω and % takes the form of

∑n
i,j=1 %ij(x)dxidxj

when written in local coordinates (i.e. we have %x
(
∂
∂xi
, ∂
∂xj

)
= %ij(x)), then the measure

of A is defined by

Vol(A) :=

∫

A

√
det(%ij)dx1 · · · dxn

where the integral is taken with respect to the Lebesgue measure of the chart.8

Since the expression
√

det(%ij) is smooth and always positive, the Riemannian
volume inherits a number of properties from the Lebesgue measure. For example, it
is a regular measure (Subsection 2.1.6). Moreover, the Sard Theorem implies that if
F : M → N is a smooth map, and X ⊆M is the set of points where rk(dF ) < dim(N),
then Vol(F (X)) = 0. In particular, a submanifoldM ⊂ N of dimension strictly smaller
dim(N) has volume 0 in N .

Every Riemannian manifold (M,%) has a well-defined notion of curvature. More
precisely, the sectional curvature is a function κ%(x,E) that associates a real number
to any 2-dimensional subspace E of any tangent space TxM .

Theorem 2.3.4 ([GHL12, Theorem 3.82]). For every n ∈ N and κ ∈ R there exists
a unique complete simply connected Riemannian manifold Mn

κ of dimension n and
constant curvature κ%(x,E) ≡ κ up to isometry. Specifically, we have

• Mn
κ = 1√

−κH
n if κ < 0;

• Mn
κ = En if κ = 0;

• Mn
κ = 1√

κ
Sn if κ > 0.

We say that a manifold has pinched curvature if there exists a constant κ ≥ 0 such
that −κ ≤ κ%(x,E) ≤ κ for every x ∈M and E ⊆ TxM . The sectional curvature is a
continuous function, and therefore every compact Riemannian manifold has pinched
curvature.

8We are being somewhat sloppy on this definition because most of the results we need regarding
the Riemannian volume can be taken as black boxes. Full details can be found in [GHL12, Section
3.H.2]
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2.3.2 The exponential map

For the proofs of the results stated in this section we refer to [GHL12, Section 2.C].
A Riemannian geodesic is a path of constant speed that is a local geodesic9 (i.e. for

every 0 < s < t < 1 close enough the restriction of the path to the interval [s, t] is a
geodesic in (M,d)). Note that a Riemannian geodesic needs not be a metric geodesic
(in the sense of Subsection 2.1.2), while a metric geodesic is a Riemannian geodesic if
and only if it has constant speed.

Theorem 2.3.5. A Riemannian geodesic must be smooth. Moreover, for every x ∈M
and v ∈ TxM there exists a ε > 0 such that there is a unique Riemannian geodesic
γ : (−ε, ε)→M such that γ(0) = p and γ̇(0) = v. In particular, γ has constant speed
‖v‖%.

Corollary 2.3.6. Let γ : [a, b]→M and γ′ : [a′, b′]→M be two Riemannian geodesics
having equal constant speed. If there exists a time t ∈ [a, b]∩[a′, b′] such that γ(t) = γ′(t)

and γ̇(t) = γ̇′(t), then γ and γ′ coincide on [a, b] ∩ [a′, b′].

Corollary 2.3.7. For every x ∈ M and v ∈ TxM there exists a unique maximal
geodesic γ : (a, b) → M with −∞ ≤ a < 0 < b ≤ +∞ such that γ(0) = x and
γ̇(0) = v.

Let U ⊆ TM be the of points (x, v) ∈ TM such that the (unique) geodesic γx,v
with γx,v(0) = x and γ̇x,v(0) = v is defined on the whole interval [0, 1]. The exponential
map is the function exp: TM → M sending (x, v) to γx,v(1). The restriction of exp

to a single tangent space TxM is denoted by expx : U ∩ TxM →M .

Theorem 2.3.8. The set U is open in TM and exp is smooth. Moreover, for every
x ∈M the differential d(expx)0 : TxM → TxM naturally coincides with the identity.

For every x ∈M the inner product %x makes TxM a metric space. Note that up
to renormalisation (equivalently, up to changing coordinate system on M) TxM is
thus isometric to the Euclidean space En.

Corollary 2.3.9. For every x ∈ M and ε > 0 there exists a δ > 0 small enough so
that expx is defined on the ball B(0, δ) ⊂ TxM and the restriction expx |B(0,δ) gives a
(1 + ε)-bi-Lipschitz equivalence between B(0, δ) and its image.

Moreover, if M is compact the parameter δ can be chosen independently of x ∈M .
9Riemannian geodesics are usually defined by differentiable means. In this case, the fact that they

are local geodesics is a theorem.
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Sketch of proof. Since U is open, the existence of the small ball where expx is defined
is obvious. Since d(expx)0 = id, the pull-back exp∗x % coincides with %x at 0 ∈ TxM .
By continuity of the differential, it follows that ‖d(expx)‖ (resp. ‖d(expx)

−1‖) is
uniformly close to 1 in a neighbourhood of 0 ∈ TxM (resp. x ∈ M). The fact that
expx is (1 + ε)-bi-Lipschitz then follows from Lemma 2.3.2. The ‘moreover’ part of
the statement is a standard compactness argument.

The following is a classical result:

Theorem 2.3.10 (Hopf-Rinow). Let (M,%) be a Riemannian manifold. The following
are equivalent:

(i) (M,d) is a complete metric space;

(ii) there exists a point x ∈M so that expx is defined on the whole of TxM ,

(iii) for every point x ∈M the exponential expx is defined on the whole of TxM and
it is surjective onto M .

Lemma 2.3.11. Let M be a complete Riemannian manifolds and let x1, x2 be two
distinct points in it. Then the set of points y ∈ M such that d(y, x1) = d(y, x2) has
measure 0 in M .

Sketch of proof. The distance function fx(y) := d(y, x) is differentiable almost every-
where.10 For a point y ∈M let w ∈ TxM be a smallest vector such that y = expx(w).
Then the function fx evaluated at y equals ‖w‖ and its gradient ∇fx(y) coincides
with the image under the differential d(expx)w of the (normalised) vector w

‖w‖ .
The function fx1 − fx2 is differentiable almost everywhere with gradient ∇fx1 −

∇fx2 . If its gradient vanishes at a point y = expx1
(w1) = expx2

(w2) it follows that
d(expx1

)w1 [ w1

‖w1‖ ] = d(expx2
)w2 [ w2

‖w2‖ ] and hence x1 = x2 because they coincide with the
point obtained following for time ‖w1‖ = ‖w2‖ the unique geodesic leaving x with
derivative −∇fx1 = −∇fx2 .

It follows that, when defined, the gradient ∇(fx1 − fx2) is never trivial and hence
the set {y ∈M | fx1(y) = fx2(y)} has measure 0.

10The only points where fx is not smooth are x itself and the cut-locus of x, which is known to
have measure 0 (see e.g. [GHL12, Lemma 3.96]).
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2.3.3 Volume of balls in manifolds with pinched curvature

The injectivity radius at a point x of a complete Riemannian manifold (M,%) is

inj(x,M) := sup{r > 0 | expx is injective on B(0, r) ⊂ TxM};

the injectivity radius of M is inj(M) := inf{inj(x,M) | x ∈M}. The injectivity radius
at any point is strictly positive by Theorem 2.3.8. The injectivity radius inj(x,M)

is a continuous function of x. Therefore, if M is compact then inj(M) is strictly
positive.11

Proposition 2.3.12. Let κ ∈ R and r ≥ 0, let Vol(κ)
n (r) be the volume of the ball of

radius r in the (unique) complete simply-connected Riemannian manifold of constant
sectional curvature κ. Then the following expressions hold:

Vol(κ)
n (r) = wn−1|κ|−

n−1
2

∫ r

0

sinhn−1
(
s
√
−κ
)
ds if κ < 0

Vol(κ)
n (r) = wn−1

∫ r

0

sn−1ds if κ = 0

Vol(κ)
n (r) = wn−1κ

−n−1
2

∫ r

0

sinn−1
(
s
√
κ
)
ds if κ > 0 and r ≤ π√

κ

where wn−1 is the volume of the sphere Sn−1.

Theorem 2.3.13 (Bishop-Gunther-Gromov [GHL12, Theorem 3.101]). Let (M,%) be
a Riemannian manifold of dimension n, x ∈M any point and let r ≤ inj(x,M). For
every κ ∈ R, the following hold:

• if every sectional curvature of M is at least κ then Vol(BM(x, r)) ≤ Vol(κ)
n (r);

• if every sectional curvature of M is at most κ then Vol(BM(x, r)) ≥ Vol(κ)
n (r).

For a fixed Riemannian manifold (M,d), let vM (r) and VM (r) denote the infimum
and supremum Riemannian volume of a ball of radius r in M :

vM(r) := inf{Vol
(
B(x, r)

)
| x ∈M} VM(r) := sup{Vol

(
B(x, r)

)
| x ∈M}.

Lemma 2.3.14. Let (M,%) be a complete n-dimensional Riemannian manifold with
pinched sectional curvature −κ ≤ κ% ≤ κ and positive injectivity radius. Let C :=

min
{

inj(M), π√
κ

}
. Then for every choice of radii r ≤ R ≤ C there exists a constant

Q = Q(n, κ, C,R/r) depending only on n, κ, C and the ratio R/r such that

VM(R)

vM(r)
≤ Q.

11Complete non-compact manifolds need not have positive injectivity radius, not even under the
assumption of constant curvature.

36



Proof. By Theorem 2.3.13, for every x ∈M and 0 ≤ t ≤ C we have

Vol(κ)
n (t) ≤ Vol(BM(x, t)) ≤ Vol(−κ)

n (t)

Thus we obtain
VM(R)

vM(r)
≤ Vol(−κ)

n (R)

Vol(κ)
n (r)

,

and applying Proposition 2.3.12 we deduce

VM(R)

vM(r)
≤
∫ R

0
sinhn−1

(
s
√
κ
)
ds∫ r

0
sinn−1

(
s
√
κ
)
ds

.

Let β = R/r and define the function

fβ(t) :=

∫ βt
0

sinhn−1
(
s
√
κ
)
ds

∫ t
0

sinn−1
(
s
√
κ
)
ds

=

∫ t
0
β sinhn−1

(
βs
√
κ
)
ds

∫ t
0

sinn−1
(
s
√
κ
)
ds

.

The function fβ(t) is differentiable at every 0 < t ≤ C, and

lim
t→0

fβ(t) = lim
t→0

β sinhn−1
(
βt
√
κ
)

sinn−1
(
t
√
κ
) = βn.

Taking W to be the maximum value of the continuous function fβ on the compact set
[0, C/β] gives the desired bound.

Corollary 2.3.15. Any compact Riemannian manifold (M,%) is a doubling metric
measure space (Definition 2.1.12).

Proof. Since the diameter of M is finite, it is enough to prove the doubling condition
for balls of arbitrarily small radius. Since inj(M) > 0 and M has pinched curvature,
for small balls we can apply Lemma 2.3.14 and obtain Q(n, κ, C, 2) as a doubling
constant.

2.4 Functional analysis

In this manuscript we will use complex Hilbert and Banach spaces.12 We will generally
denote a Banach space by E and a Hilbert space by H. Two norms on a Banach
space are equivalent if they induce the same topology on the underlying vector space
(equivalently, both of them can be bounded in term of the other). Recall that a Banach
space is separable if it admits a countable dense subset.

12We decided to use scalars in C because the majority of the works that we refer to use complex
numbers. Most of what follows is true for real valued Banach spaces as well.
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We will denote by S(E) the unit sphere in the Banach space E (i.e. the set of
unit vectors) and we identify the unit sphere of C with the unit circle S1. For any
(measurable) subset A of a (measure) space X, we denote by 1A : X → R its indicator
function, i.e. the (measurable) function assigning the value 1 to points in A and 0 to
points in the complement.

2.4.1 Duals and operator topologies

The dual of a Banach space E is denoted by E∗. Every Banach space is naturally
embedded in its bidual E ⊆ (E∗)∗. A Banach space is reflexive if this containment is
an equality.

Given a vector v ∈ E and functional w ∈ E∗ we denote the evaluation w(v) by
〈v, w〉. IfH is a Hilbert space, this notation is coherent with the canonical identification
H ∼= H∗ sending a vector w to the functional w∗ := 〈 · , w〉. That is, 〈v, w∗〉 coincides
with the inner product 〈v, w〉 for every v, w ∈ H.

Given two Banach spaces E1, E2, we denote by L(E1, E2) the space of continuous
linear operators from E1 to E2. The norm of a linear operator between T : E1 → E2

is defined as

‖T‖L(E1,Ee)
:= sup

v∈S(E1)

‖T (v)‖E2
= sup

v∈E1r{0}

‖T (v)‖E2

‖v‖E1

;

when the spaces are clear from the context, we will simply denote it by ‖T‖. This norm
defines the norm topology on L(E1, E2). The weak operator topology on L(E1, E2) is
defined as the weakest topology such that the function

T 7→ 〈T (v), w〉

is continuous for every v ∈ E1 and w ∈ E∗2 .
The strong operator topology on L(E1, E2) is defined as the weakest topology such

that the function T 7→ T (v) is continuous for every v ∈ E1. There is a (strict) inclusion
of topologies on L(E1, E2):

(Weak Op. Top.) ⊂ (Strong Op. Top.) ⊂ (Norm Topology).

We denote by GL(E) ⊂ L(E,E) the set of continuous invertible linear endomor-
phism with continuous inverse, and by U(E) ⊂ GL(E) the set of automorphism that
preserve the norm of E. The spaces GL(E) and U(E) are equipped with the subset
topologies coming from L(E,E).
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2.4.2 Lp-spaces

Given a probability space (X, ν) and a parameter 1 ≤ p ≤ ∞ we will denote by
Lp(X, ν) the Banach space of complex valued functions of X with finite Lp-norm

‖f‖p =
(∫

X

|f(x)|pdν(x)
) 1
p
.

Remark 2.4.1. At some point we will have to consider the Lp-space of real valued
functions. To avoid confusion we will denote it by Lp(X, ν;R) or simply Lp(X;R).

Given a function f : X → C, we denote by arg(f) : X → S1 = S(C) the argument
of f , that is defined by

arg(f)(x) :=
f(x)

|f(x)|
when f(x) 6= 0 and arbitrarily (e.g. constantly equal to 1) when f(x) = 0.

Theorem 2.4.2 (Mazur). For every 1 ≤ p, q < ∞ the Mazur map Mp,q : Lp(X) →
Lq(X) defined by

Mp,q(f) := arg(f)|f |
p
q

restricts to a uniformly continuous homeomorphism of the unit spheres S(Lp(X))→
S(Lq(X)).

See [BL98, Theorem 9.1] for a proof. We will also use the following:

Theorem 2.4.3 (Banach, Lamperti [Lam58]). For 1 ≤ p < ∞ with p 6= 2, any
unitary operator U : Lp(X, ν)→ Lp(X, ν) must be of the form

Uf(x) = f(ϕ(x))h(x)
(dϕ∗ν
dν

(x)
) 1
p
;

where ϕ : X → X is some measure-class preserving transformation, dϕ∗ν
dν

is the
Radon-Nikodym derivative and |h(x)| = 1 almost everywhere.

2.4.3 Uniformly convex Banach spaces

Given a Banach space E, its convexity modulus is the function δE : [0, 2]→ [0, 1] given
by

δE(ε) = inf

{
1− ‖x+ y‖

2

∣∣∣∣∣ ‖x‖ ≤ 1, ‖y‖ ≤ 1, ‖x− y‖ ≥ ε

}
.

The Banach space E is uniformly convex if δE(ε) > 0 for every ε > 0.
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We say that a Banach space E is superreflexive if it admits an equivalent norm
that makes it into a uniformly convex Banach space.13 A superreflexive Banach space
is also reflexive.

A group G < GL(V ) of continuous linear transformations of a Banach space E is
uniformly equicontinuous if there is a uniform upper bound on the operator norms
‖g‖GL(E) for g ∈ G. The next two results are proved (for real Banach spaces) in
[BFGM07, Subsection 2.b]

Fact 2.4.4. If E is a superreflexive Banach space and G is a group of equicontinuous
linear transformations of E, then there exists an equivalent norm on E that is uniformly
convex and G-invariant.

A linear action of a group G on a vector space is called a representation of G. We
will denote representations by either π : G→ GL(V ) or by π : Gy V (as opposed to
our conventional use of the symbol ρ for actions).

Fact 2.4.5. Let G be a topological group and π : G→ GL(E) a representation on a
superreflexive Banach space E such that π(G) is equicontinuous. Then the following
are equivalent:

(i) π is continuous w.r.t the weak operator topology;

(ii) π is continuous w.r.t the strong operator topology;

(iii) the map G× E → E is continuous ( i.e. π is a continuous action as defined in
Subsection 2.2.2).

2.4.4 Spectral gaps for (probability) measure preserving ac-
tions

Let G be a locally compact Hausdorff second countable group and π : G→ GL(E) a
(weakly continuous) representation on a Banach space. Following [BFGM07] we give
the following:

Definition 2.4.6. The representation π has almost invariant vectors if there exists a
sequence vn ∈ E r {0} such that

lim
n→∞

diam
(
π(K)vn

)

‖vn‖
= 0

13This is not the classic definition of superreflexive spaces. The fact that these definitions coincide
is a theorem of Pisier.
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for every compact set K ⊆ G (equivalently, there exists a sequence of unit vectors
vn ∈ S(E) with diam

(
π(K)vn

) n→∞−−−→ 0 for every compact K).

We take the following from [BFGM07, Remark 4.3]:

Lemma 2.4.7. Given a unitary representation of a group on an Lp space πp : G→
U(Lp(X, ν)), let πq : Gy Lq(X, ν) be the action defined by πq(g) := Mp,q ◦πp(g)◦Mq,p.
Then πq is a an action by unitary maps. Moreover, πq has almost invariant vectors if
and only if so does πp.

Sketch of proof. For every g ∈ G, the map πq(g) : Lq(X, ν) → Lq(X, ν) is a well-de-
fined function. The fact that it is linear and unitary follows from the Banach-Lamperti
Theorem (Theorem 2.4.3) through a straightforward computation.

With regard to the almost invariant vectors, let vn be a sequence of almost invariant
vectors for πp with ‖vn‖p = 1 for every n ∈ N. Since the Mazur mapsMp,q are uniformly
continuous (Theorem 2.4.2) there exists an ε > 0 such that ‖Mp,q(vn)‖q ≥ ε for every
n ∈ N. Still, diam

(
πq(K)Mp,q(vn)

)
→ 0 for every compact set K ⊆ G and therefore

the vectors ‖Mp,q(vn)‖q are almost invariant.

For every 1 ≤ p < ∞, a measure preserving action ρ : G y (X, ν) induces an
action by linear isometries πpρ : Gy Lp(X) by precomposition:

πpρ(g)f(x) := f(g−1 · x)

for every g ∈ G, f ∈ Lp(X). When p or ρ are clear from the context, we simply denote
this representation by πρ or π. Note that a priori πρ needs not be continuous (this
will not be an issue when the acting groups is a countable group Γ equipped with the
discrete topology).

Remark 2.4.8. If µ is σ-finite and L2(X) is a separable Hilbert space, then any
measurable measure-preserving14 action ρ : G y (X,µ) gives rise to a (unitary)
representation πρ continuous with respect to the strong operator topology [BdlHV08,
Proposition A.6.1].

14If µ is σ-finite and Gy X is a measure class preserving action, then one obtains an action by
linear isometries πpρ : Gy Lp(X) by letting

πpρ(g)f(x) :=
(dg−1

∗ µ

dµ
(x)
) 1

p

f(g−1 · x)

where dg−1
∗ µ
dµ is the Radon–Nikodym derivative (Subsection 2.1.5). The above is also known as

Koopman representation induced by G y X. When p = 2 and L2(X) is separable, [BdlHV08,
Proposition A.6.1] still applies and hence the Koopman representation is continuous (this might be
true in greater generality, but I did not have the time to investigate further).
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If ν is a probability measure, the constant functions belong to Lp(X) and they are
invariant vectors for the representation πρ : Gy Lp(X). The canonical complement
of the subspace of constant functions in Lp is given by the subspace of functions with
zero average

Lp0(X) :=

{
f ∈ Lp(X)

∣∣∣∣
∫

X

f(x)dν(x) = 0

}
,

and the representation πρ restricts to a representation Gy Lp0(X) that we will (with
an abuse of notation) denote again by πρ.

Let (X, ν) be a probability space, Γ = 〈S〉 a finitely generated group, ρ : Γ y X a
measure preserving action and πρ the induced continuous representation. Notice that
the action πρ : Γ y Lp0(X) has almost invariant vectors if and only if there exists a
sequence fn ∈ Lp0(X)r {0} such that

lim
n→∞

‖s · fn − fn‖p
‖fn‖p

= 0

for every s ∈ S.

Definition 2.4.9. A probability measure preserving action ρ : Γ y (X, ν) of a finitely
generated group Γ = 〈S〉 has a spectral gap in Lp0 if there exists a δ > 0 such that the
induced representation πpρ : Γ y Lp0 satisfies

∑

s∈S±
‖s · f − f‖p ≥ δ‖f‖p. (2.2)

for every f ∈ Lp0(X). We also say that a family of measure preserving transformations
ρi : Γ y (Xi, νi), i ∈ I has uniform spectral gap if they all have spectral gap with a
constant δ independent from i ∈ I.

Remark 2.4.10. In (2.2) we take the sum over S± because this is the most common
convention. Taking the sum over S would yield the same result (with a different
constant) because S is finite and ‖s−1 · f − f‖p = ‖s · f − f‖p. This could not be the
case if the action was not assumed to be measure preserving.

Remark 2.4.11. A measure preserving action of a finitely generated group has spectral
gap if and only if the induced unitary representation is isolated from the trivial
representation (i.e. it admits a Kazhdan pair). See Remark 2.5.21.

The action ρ : Γ y (X, ν) has a spectral gap in Lp0 if and only if πρ does not have
almost invariant vectors in Lp0. It hence follows from Lemma 2.4.7 that the existence
of a spectral gap for ρ does not depend on the choice of 1 ≤ p <∞.
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2.4.5 Banach valued spectral gap

We refer to [DU77, Chapter II] for details. A Banach valued function on a measure
space f : X → E ismeasurable if there exists a sequence of simple functions fn : X → E

(i.e. finite sums of v1A(x) with A ⊆ X and v ∈ E) such that ‖f − fn‖E → 0 almost
everywhere in X.

A measurable function is integrable if
∫
X
‖f(x)‖Edx is finite. The Bochner integral

of an integrable function is defined by
∫

E

f(x)dx = lim
n→∞

∫

X

fn(x)dx ∈ E

where the fn are simple functions converging to f and their integral is the obviously
weighted sum of vectors in E. Such integral is well-defined.

A Banach valued function is p-integrable if
∫
X
‖f(x)‖pEdx < +∞. Note that if

(X, ν) is a probability space and p ≥ 1, then every p-integrable function is integrable
and hence admits a Bochner integral.

Let (X, ν) be a probability space and E a Banach space. The Bochner space
Bp = Lp(X, ν;E) is the Banach space of p-integrable functions f : X → E equipped
with the norm

‖f‖Bp =

(∫

X

‖f(x)‖pE dν(x)

) 1
p

.

Remark 2.4.12. Note that the Bochner space Lp(X;C) is trivially the same as the
usual Lp-space Lp(X). Moreover, the notation is also coherent with the real case
Lp(X;R) (even though the latter is not a complex Banach space).

Remark 2.4.13. An L2-Bochner spaces over a Hilbert space has a naturally defined
inner products that makes it into a Hilbert space.

We let L2
0(X, ν;E) be the subspace of B := B2 of functions with zero mean (i.e. 0

Bochner integral). Any measure preserving action ρ : Γ y (X, ν) induces a unitary
action on B and on L2

0(X, ν;E) by γ · f(x) = f(γ−1 · x).

Definition 2.4.14. We say that ρ has E-spectral gap if there exists a constant ε > 0

so that for every f ∈ L2
0(X, ν;E), we have

∑

s∈S±
‖f − s · f‖B ≥ ε‖f‖B

where S is a finite generating set of Γ.
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2.4.6 The Rademacher type

Let (Ω,P) be a standard probability space (e.g. the interval [0, 1] with the Lebesgue
measure on the Borel σ-algebra) and let Xn : Ω → C with n ∈ N be a family of
independent complex Gaussian N (0, 1) random variables (a complex N (0, 1) random
variable is a random variable such that the real and imaginary part are independent
standard Gaussian random variables).

A Banach space E is said to have type p ≥ 1 if there exists a constant T > 0 such
that for every n ∈ N and every choice of n vectors v1, . . . , vn ∈ E, we have

∥∥∥∥∥
n∑

i=1

Xivi

∥∥∥∥∥
L2(Ω;E)

≤ T

(∑

i

‖vi‖pE

)1/p

.

Every Banach space has type 1; therefore E is said to have non-trivial type if it
has type p for some p > 1.

Fact 2.4.15. Every uniformly convex Banach space has non-trivial type.

Remark 2.4.16. The converse is false. See [Mau03] for more details on type.

2.5 Unitary representations

A unitary representation of G is a continuous15 homomorphism π : G→ U(H) of the
group G into the group of unitary operators of a Hilbert space H. We will generally
denote a representation simply by π, but we will use the notation (π,H) if we want to
stress that H is the Hilbert space that is being acted on. If we want to stress that the
acting group is G, we call π a G-representation.

2.5.1 Basic facts and definitions

If H′ < H is a π-invariant closed subspace, the restriction of π|H′ is a subrepresentation
of π. A representation π is irreducible if it has no invariant closed subspaces (besides
{0} and H itself). A representation (π′,H′) is contained in (π,H) (denoted by π′ ⊆ π)
if it is isomorphic to a subrepresentation of π; i.e. there exists an linear isometric
embedding T : H′ ↪→ H such that T ◦ π′(g) = π(g) ◦ T for every g ∈ G (i.e. a
G-equivariant linear isometric embedding). Note in particular that T (H′) must be a
π-invariant vector subspace of H and that it is closed as it is an isometric image of a
Hilbert space.

15By Fact 2.4.5 the specific choice of topology does not matter.
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Every group G admits a trivial representation i.e. G acts as the identity on the
one-dimensional vector space C. We denote the trivial representation by IG. Note that
the trivial representation is irreducible, because C has no non-trivial vector subspaces.

Remark 2.5.1. The unitary representation induced by a measure preserving action of
a group does not contain the trivial representation if and only if the action is ergodic
2.2.1.

Let (πi,Hi)i∈I be a family of unitary representations of the group G. The Hilbert di-
rect sum

⊕
i∈I Hi is the Hilbert space given by the set of elements v = (vi)i∈I ∈

∏
i∈I Hi

such that
∑

i∈I‖vi‖
2
Hi <∞ equipped with the inner product 〈v, w〉 :=

∑
i∈I〈vi, wi〉Hi .

The direct sum of the representations (πi)i∈I is the unitary representation
⊕

i∈I

πi : G→ U
(⊕

i∈I

Hi

)

acting as πi on the i-th coordinate. If the set I is finite, the direct sum coincides with
the standard (finite) direct sum of representations. If I is countable, the Hilbert sum
coincides with the `2-sum.

Given any natural number n ≥ 1, we denote by nπ the direct sum of n copies of π.
It is customary to denote by ∞π the direct sum of a countably many copies of π. If
(π,H) is a representation and H is finite dimensional, we let dim(π) := dim(H).

Proposition 2.5.2 ([BdlHV08, Proposition A.1.8]). Let (πi)i∈I be a family of repre-
sentations of G and π an irreducible G-representation. Then π ⊆⊕i∈I πi if and only
if π ⊆ πi for some i ∈ I.

Let G be a locally compact second countable Hausdorff topological group. Then
G admits a left-invariant Haar measure m (Subsection 2.2.1).

Definition 2.5.3. The (left) regular representation of G is the unitary representation
λG : G→ U

(
L2(G,m)

)
induced from the action of G on itself by (left) multiplication

(the representation is induced by precomposition as in Subsection 2.4.4).

The following is a classical result.

Theorem 2.5.4 (Peter-Weyl). Let G be a compact group. Then every irreducible
representation is finite dimensional and every representation is isomorphic to a direct
sum or irreducible representations.

Moreover, the regular representation of the compact group G is isomorphic to the
direct sum

⊕
π∈Ĝ(dim(π))π, and it hence contains all the irreducible representations

(Ĝ is the set of irreducible representations, see Remark 2.5.14).
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See [Rob83, Chapter 5] for a proof.16

Remark 2.5.5. For general topological groups one loses the fact that any represen-
tation is direct sum of irreducible representations. What remains true is that every
representation is direct sum of cyclic representations [BdlHV08, Proposition C.4.9]. It
is also possible to prove that every representation is a direct integral of irreducible
representations [BdlHV08, Section F.5].

2.5.2 Weak containments and equivalences

Let (π,H) be a unitary representation. The diagonal matrix coefficients of π are the
functions G→ C of the form g 7→ 〈π(g)v, v〉 for some fixed v ∈ H.
Remark 2.5.6. The diagonal matrix coefficient of π are also called positive functions
associated with π. This is because diagonal matrix are positive functions (in the sense
of kernels defined on G) [BdlHV08, Proposition C.4.3]. Vice versa, every positive
function of G is a diagonal matrix element for some unitary representation π of G
[BdlHV08, Proposition C.4.9].

Definition 2.5.7. Let (π,H) and (π′,H′) be unitary representations of G, we say that
π is weakly contained in π′ (denoted by π ≺ π′) if every diagonal matrix coefficient of
π can be approximated uniformly on compact sets by finite sums of matrix coefficients
of π′. That is, for every v ∈ H, K ⊆ G compact and ε > 0 there exist w1, . . . , wn ∈ H′
such that ∣∣∣∣∣〈π(g)v, v〉 −

n∑

i=1

〈π′(g)wi, wi〉
∣∣∣∣∣ < ε

for every g ∈ K.

It is clear that the weak containment defines a transitive relation, and one define an
equivalence relation saying that two unitary representations π, π′ are weakly equivalent
(denoted π′ ∼ π) if π ≺ π′ and π′ ≺ π.

Lemma 2.5.8. For every unitary representation π of G and n ∈ N we have nπ ∼ π.
More generally, for every set I the sum

⊕
i∈I π of |I| copies of π is weakly equivalent

to π.
16This theorem is actually a collection of various results. The statement we gave is a rewording of

[BdlHV08, Theorem A.5.2].
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Sketch of proof. We have to show that nπ ≺ π. A diagonal matrix coefficient of nπ
takes the form 〈nπ(g)v, v〉 where v = (v1, . . . , vn) is a vector in H⊕ · · · ⊕ H, and the
claim follows because

〈nπ(g)v, v〉 = 〈π(g)v1, v1〉+ · · ·+ 〈π(g)vn, vn〉.

To deal with infinite sums, let v = (vi)i∈I . It is enough to notice that for every ε > 0

there exists a finite subset J ⊂ I such that
∑

i∈IrJ‖vi‖
2 < ε, whence we deduce that

the diagonal matrix coefficient associated with v is approximated up to ε by the sum
of the diagonal matrix coefficients 〈π(g)vj, vj〉 for j ∈ J .

Corollary 2.5.9. Let G be a compact group. Then every unitary representation π

of G is weakly contained in the regular representation λG. Moreover, if π has no
invariant vectors, then it is weakly contained in the restriction of λG to the subspace
of zero-integral functions L2

0(G).

Proof. By the Peter-Weyl Theorem (Theorem 2.5.4) we know that π is isomorphic to
a direct sum of irreducible representations, and that every irreducible representation
is contained in λG. It follows that π can be embedded in |I|λG for some cardinal |I|.
On the other hand, |I|λG ≺ λG (Lemma 2.5.8), thus we obtain π ⊆ |I|λG ≺ λG.

For the ‘moreover’ statement, it is enough to note that if π has no invariant vectors
then its decomposition as sum of irreducible representations does not contain IG as a
factor. Since λG = λG|L2

0(G) ⊕ IG, it follows that π ⊂ |I|
(
λG|L2

0(G)

)
≺ λG|L2

0(G).

A diagonal matrix coefficient φv(g) := 〈π(g)v, v〉 is normalised if 1 = φv(e) = ‖v‖2

(i.e. it is the diagonal matrix coefficient associated with a unit vector).

Lemma 2.5.10 ([BdlHV08, Remark F.1.2]). If π and π′ are unitary representation
of G such that π ≺ π′ and φv is a normalised diagonal matrix coefficient of π, then φv
can be approximated uniformly on compact sets by convex sums of normalised matrix
coefficients of π′.

Sketch of proof. Let φ be a diagonal matrix coefficient of π and ψ1, . . . , ψn be diagonal
matrix coefficients of π′ such that |φ(g)−∑n

i=1 ψi(g)| < ε for every g ∈ K. We can
assume that e ∈ K. Then |1−∑n

i=1 ψi(e)| = |φ(e)−∑n
i=1 ψi(e)| < ε.

Let λ :=
∑n

j=1 ψj(e) (so that λ ≈ 1). We obtain an approximation by convex
combination of normalised coefficients:∣∣∣∣∣φ−

n∑

i=1

ψi(e)

ψ1(e) + · · ·+ ψn(e)

ψi
ψi(e)

∣∣∣∣∣ =

∣∣∣∣
λφ−∑n

i=1 ψi
λ

∣∣∣∣

≤ 1

|λ|
(
|φ−∑n

i=1 ψ|+ |(1− λ)φ|
)
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and this can be made arbitrarily small because |φ| is bounded as continuous on a
compact set.

Proposition 2.5.11 ([BdlHV08, Proposition F.1.4]). Let π and π′ be unitary repre-
sentations of a locally compact Hausdorff second countable group. If π is irreducible
and π ≺ π′ then every normalised diagonal matrix coefficient of π can be approximated
uniformly on compact sets by normalised diagonal matrix coefficients of π′ (as opposed
to convex sums of normalised coefficients).

The following is not relevant to our exposition, we include it because we could not resist the
temptation:

Proposition 2.5.12 (Hulanicki–Reiter [BdlHV08, Theorem G.3.2]). Let G be a locally compact
second countable Hausdorff topological group. Then the following are equivalent:

(i) G is amenable;

(ii) IG ≺ λG;
(iii) π ≺ λG for every unitary representation π of G.

2.5.3 The Fell topology

Given any set S of unitary representations (the class of unitary representations is not
a set, thus one needs to restrict to a set to define a topology), let R be the set of
equivalence classes of representations in S (up to weak equivalence).

For a given representation (π,H) ∈ S and any choice of diagonal matrix coefficients
φ1, . . . , φn, compact set K ⊆ G and constant ε > 0, let W (π, φ1, . . . , φn, K, ε) ⊆ S be
the set of representations π′ that admit functions ψ1, . . . , ψn that are finite sums of
diagonal matrix coefficients and such that |φi(g)− ψi(g)| < ε for every g ∈ K and
i = 1, . . . , n.

The sets W (π, φ1, . . . , φn, K, ε) are closed under the weak equivalence of unitary
representation. They hence descend to R and they form the basis of a topology on R
which is known as the Fell topology. 17

In this setting, (the proof of) Proposition 2.5.11 gives the following:

Proposition 2.5.13 ([BdlHV08, Proposition F.2.4]18). Let G be a locally compact
Hausdorff second countable group and S a set of unitary representations. If π ∈ S is
an irreducible representation, then a basis of neighbourhoods of π for the Fell topology
is given by the sets W̃ (π, φ1, . . . , φn, K, ε), where φi are normalised diagonal matrix

17Equivalently, the Fell topology can be defined by saying that a net of (equivalence classes of)
unitary representations (πi)i∈I converges to π if and only if π ≺⊕j∈J πj for every subnet J ⊆ I.

18The authors of [BdlHV08] state this result without mentioning that the coefficients can be assumed
to be normalised. Our statement follows from theirs together with the proof of Lemma 2.5.10.
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coefficients, K ⊆ G is compact, ε > 0 and W̃ (π, φ1, . . . , φn, K, ε) is the set of represen-
tations in F that admit normalised matrix coefficients ψi such that |φi(g)− ψi(g)| < ε

for every g ∈ K.

Remark 2.5.14. The family of (isomorphism classes of) irreducible unitary representa-
tions of a topological group G is a set [BdlHV08, Remark C.4.13], which can hence be
endowed with the Fell topology. We shall denote this set by Ĝ.

2.5.4 Operator algebras and weak containments

Let G be a locally compact Hausdorff second countable topological group, let m be
its Haar measure and L1(G) the space of integrable complex-valued functions of G.
For every unitary representation (π,H) of G one can define a continuous linear map
19 (denoted again by π) from L1(G) to the space of linear endomorphisms L(H,H)

letting

π(f) :=

∫

G

f(x)π(x)dm(x)

for every f ∈ L1(G) (here the integral is meant in the Bochner sense, see Subsec-
tion 2.4.5). Alternatively π(f) is the unique linear operator such that

〈π(f)v, w〉 =

∫

G

f(x)〈π(x)v, w〉dm(x)

for every v, w ∈ H.

Theorem 2.5.15 ([Dix82, Section 18]). Let π and π′ be unitary representations of G.
Then π ≺ π′ if and only if ‖π(f)‖ ≤ ‖π′(f)‖ for every f ∈ L1(G). 20

More generally, Let P(G) be the space of probability measures on G. For every
probability measure µ ∈ P(G) the µ-convolution operator π(µ) ∈ L(H,H) is defined
by
∫
G
π(x)dµ(x). That is, it is the unique operator such that

〈π(µ)v, w〉 =

∫

G

〈π(x)v, w〉dµ

19 The mapping L1(G) → L(H,H) is actually a ∗-representation (a continuous homomorphism
of ∗-algebras) and is non-degenerate (for every v ∈ H r {0} there exists an f ∈ L1(G) such that
π(f)v 6= 0). It is a theorem that the converse is also true: every non-degenerate ∗-representation of
L1(G) arises from this construction. Here L1(G) is the convolutive algebra (the product of functions
is their convolution) and the involution is given by f∗(x) := f(x−1). The involution on L(H,H) is
given by taking the adjoint operator.

20 In [Dix82, Section 18] it is also shown that π ≺ π′ if and only if C∗ ker(π′) ⊆ C∗ ker(π) (where
C∗ ker is the kernel of the ∗-representation). From Theorem 2.5.15 and Proposition 2.5.12 it hence
follows that G is amenable if and only if the reduced and maximal C∗-algebras of G coincide.
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for every v, w ∈ H. The definition of π(µ) agrees with that of π(f) when f is an
integrable function of norm 1 and µ(x) = f(x)m(x). Since the set P ∩ L1(G) is dense
in P(G), we deduce the following from Theorem 2.5.15.

Corollary 2.5.16. Let π and π′ be unitary representations of a locally compact
Hausdorff second countable group G. Then π ≺ π′ if and only if ‖π(µ)‖ ≤ ‖π′(µ)‖ for
every µ ∈ P(G).

Note that Corollary 2.5.9 implies the following:

Corollary 2.5.17. Let G be a compact group, µ ∈ P(G) a probability measure and π a
unitary representation without non-trivial fixed vectors. Then ‖π(µ)‖ ≤ ‖λG|L2

0(G)(µ)‖
where λG|L2

0(G) is the restriction of the regular representation to the space of zero-average
functions.

2.5.5 Kazhdan sets and pairs

We use the notation from [Sha00].

Definition 2.5.18. Let K ⊆ G be a compact subset and ε > 0 a constant. If H is a
Hilbert space and π : G→ U(H) is a unitary representation, a (K, ε)-invariant vector
is a vector v ∈ H such that ‖π(g)v − v‖ < ε‖v‖ for every g ∈ K.

Given a family F of unitary representations of G, we say that a pair (K, ε)

is a Kazhdan pair for F if every representation π ∈ F does not have non-zero
(K, ε)-invariant vectors. When this is the case, K (resp. ε) is a Kazhdan set (resp. a
Kazhdan constant) for F .

Lemma 2.5.19. Let π be a unitary representation of a locally compact Hausdorff
second countable group G. The following are equivalent:

(i) π admits a Kazhdan pair;

(ii) π does not admit almost invariant vectors (Definition 2.4.6);

(iii) π does not weakly contain the trivial representation;

(iv) ‖π(f)‖ < ‖f‖1 for some function f ∈ L1(G);

(v) ‖π(µ)‖ < 1 for some probability measure µ ∈ P(G).
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Sketch of proof. (i)⇒(ii) If π admits a sequence vn ∈ H of almost invariant vectors
then for every compact K and ε > 0, vn is going to be a (K, ε)-invariant vector for
n large enough because K ∪ {e} is compact in G and hence diam(π(K) · vn ∪ {vn})
must be small for large n.

(ii)⇒(i) Let Kn be an exhaustion by compact sets of G (Subsection 2.2.1) and
let vn be a (Kn,

1
n
)-invariant vector. Then the sequence vn is a sequence of almost

invariant vectors because every compact set K ⊆ G is contained in a Kn for n large
enough.

(i)⇔(iii) By Lemma 2.5.10, we know that IG ≺ π if and only every normalised
diagonal matrix coefficient of IG can be approximated on compact sets by normalised
diagonal matrix coefficients of π; i.e. for every K ⊆ G compact and ε > 0 there exists
w ∈ S(H) such that |1− 〈π(g)w,w〉| < ε for every g ∈ K.

On the other hand (K, ε′) is not a Kazhdan pair for π if and only if there exists a
w ∈ S(H) such that

(ε′)2 > ‖π(g)w − w‖2 = ‖π(g)w‖2 +‖w‖2−2 Re(〈π(g)w,w〉) = 2
(
1−Re(〈π(g)w,w〉)

)

for every g ∈ K. The claim follows because 1− Re
(
〈π(g)v, v〉

)
≤ |1− 〈π(g)v, v〉| and

the fact that, since |〈π(g)v, v〉| ≤ 1, it is a simple exercise of Euclidean geometry to
show that

1− Re
(
〈π(g)v, v〉

)
≥ |1− 〈π(g)v, v〉|2

2
.

(iii)⇔(iv)⇔(v) Follow from Theorem 2.5.15 and Corollary 2.5.16.

More in general, the following holds:

Proposition 2.5.20. Let G be a locally compact Hausdorff second countable group
and let F be a set of unitary representations of G. The following are equivalent:

(i) F admits a Kazhdan pair;

(ii) F does not contain the trivial representation IG, and IG is isolated in the Fell
topology on F ∪ {IG}.

Sketch of proof. By Proposition 2.5.13, IG is isolated in F ∪ {IG} if and only if there
is a compact K ⊆ G and ε > 0 such that W̃ (IG, 1, K, ε) ∩ F = ∅. That is, for every
π ∈ F and v ∈ S(H) we have |1− 〈π(g)v, v〉| ≥ ε for some g ∈ K.

The statement follows thanks to the identity:

‖π(g)v − v‖2 = 2‖v‖2 − 2 Re
(
〈π(g)v, v〉

)
.
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Remark 2.5.21. According to Definition 2.4.9, a probability measure preserving action
ρ : Γ y (X, ν) of a finitely generated group Γ = 〈S〉 has a spectral gap (in L2

0)
if there exists a δ > 0 such that the induced representation π : Γ y L2

0 satisfies∑
s∈S±‖π(s)f − f‖2 ≥ δ‖f‖2 for every f ∈ L2

0(X). If S is a Kazhdan set of ρ with
Kazhdan constant ε, this inequality clearly holds with δ = ε. Vice versa, when the
inequality holds then S must be a Kazhdan set with Kazhdan constant at least as
large as δ

|S±| .

Let now G be a topological group and S ⊂ G a finite subset. The probability
measure µS on G is defined as the average of the delta functions of the points of S

µS :=
1

S

∑

s∈S

δs,

where δs is the measure assigning measure 1 to the point {s} and 0 to its complement.

Proposition 2.5.22. Let F be a set of unitary representations of topological group
G and S ⊂ G be finite. The following are equivalent:

(i) S is a Kazhdan set for F ;

(ii) S±e is a Kazhdan set for F ;

(iii) there exists ε > 0 such that
∥∥π(µS±e )

∥∥ < 1− ε for every π ∈ F .

Sketch of proof. The first two conditions are clearly equivalent. To prove (ii)⇔(iii),
note that the operator π(µS±e ) is self-adjoint and thus we have

∥∥π(µS±e )
∥∥ = sup

v∈S(H)

∣∣〈π(µS±e )v, v〉
∣∣

(see [Rud91, Chapter 12]). Moreover, since π(µS±e ) is self-adjoint the inner product
〈π(µS±e )v, v〉 is real. The fact that e ∈ S±e assures us that 〈π(S±e )v, v〉 with ‖v‖ = 1 is
bounded away from −1 because we have

〈π(µS±e ), v〉 =
1

|S±e |
‖v‖2 +

1

|S±e |
∑

s∈S±e r{e}

〈π(s)v, v〉 ≥ 1

|S±e |
− |S

±
e | − 1

|S±e |
= −1 +

2

|S±e |
.

It follows that ‖π(µS±e )‖ ≤ 1− ε for some ε < 2

|S±e | if and only if

ε >
∣∣1− 〈π(µS±e )v, v〉

∣∣ =

∣∣∣∣∣∣
1

|S±e |
∑

s∈S±e

(
1− 〈π(s)v, v〉

)
∣∣∣∣∣∣
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for every v ∈ S(H), and this happens if and only if there is a ε′ > 0 such that for every
v ∈ S(H) we have 1− 〈π(s)v, v〉 > ε′ for some s ∈ S±e . From this we conclude that
S±e is a Kazhdan set using the argument in the proof of Proposition 2.5.20. 21

Remark 2.5.23. One can also show that if a family F of unitary representations of G
admits a Kazhdan pair (K, ε) and K ′ is any compact generating set for the group G,
then then also K ′ is a Kazhdan set for F (for an appropriate Kazhdan constant ε′).
See [BdlHV08, Remark 1.1.2].

2.5.6 Kazhdan property (T)

Let G be a topological group

Definition 2.5.24. The group G has Kazhdan property (T) if the family U0 of all
continuous unitary representations without non-trivial invariant vectors22 admits a
Kazhdan pair (K, ε). Such pair (K, ε) (resp. set, constant) is a Kazhdan pair (resp.
set, constant) of the group G. In the remainder, when we say that a set K is a
Kazhdan set without specifying any family of representations we mean that K is a
Kazhdan set of the group.

Remark 2.5.25. If a compact subset K ⊆ G is a Kazhdan set for every unitary
G-representation π with no non-trivial invariant vectors, then it is a Kazhdan set of
G. That is, if επ > 0 is the largest constant such that (K, επ) is a Kazhdan pair for
π, then there must exist a ε > 0 such that επ ≥ ε for every π. Indeed if this was not
the case one would get a contradiction by considering the direct sum of a sequence of
representations πn ∈ U0 with επn → 0. 23

Theorem 2.5.26. Let G be topological group. The following are equivalent:

(i) G has Kazhdan property (T);

(ii) if a unitary representation π weakly contains IG then it has invariant vectors (π
contains IG as a subrepresentation);

21 Using more spectral theory, Proposition 2.5.22 could have been proved as follows: since π(µS±
e

)
is self adjoint, it has real spectrum and its norm is equal to the spectral radius. Moreover, since
it has no residual spectrum the point spectrum realises the spectral radius. Thus it has norm one
if and only if there exist eigenvectors (or approximate eigenvectors) with eigenvalue 1, i.e. almost
invariant vectors.

22Technically, U0 is not a set. The formal definition should be that there exists a pair (K, ε) that
is a Kazhdan pair for every set of unitary representations without non-trivial invariant vectors.

23 This arguments extends to any family of unitary representations F that is closed under countable
direct sum. It fails in the general setting.
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(iii) the trivial representation is isolated in the Fell topology from any set of unitary
representations without non-trivial fixed points;

Moreover, if G is locally compact Hausdorff second countable all of the above are
equivalent to:

(iv) no unitary representation π ∈ U0 admits a sequence of almost invariant vectors;

(v) for every π ∈ U0 there exists a f ∈ L1(G) such that ‖π(f)‖ < ‖f‖1;

(vi) for every π ∈ U0 there exists a µ ∈ P(G) such that ‖π(µ)‖ < 1;

(vii) the trivial representation is isolated in the Fell topology in the set of irreducible
unitary representation Ĝ (see Remark 2.5.14).

Sketch of proof. (i)⇒(ii) Let K be a Kazhdan set of G. If π does not have non-trivial
invariant vectors, then K is Kazhdan set for π. The statement follows from the proof
of (i)⇒(iii) in Lemma 2.5.19.

(ii)⇒(i) If G does not have Kazhdan property T , for every pair (K, ε) with
K ⊆ G compact and ε > 0 there exists a unitary representation π(K,ε) in U0 that has
(K, ε)-invariant vectors. Let I be the set of such pairs (K, ε). Then the direct sum⊕

(K,ε)∈I π(K,ε) is a unitary representation without non-trivial fixed vectors that does
not admit a Kazhdan pair.

(ii)⇒(iii) If {πi | i ∈ I} is a set of representations with no non-trivial fixed vectors
that is not isolated from IG, then the direct sum

⊕
i∈I πi is a representation without

non-trivial invariant fixed vectors that weakly contains IG.
(iii)⇒(ii) If π has no non-trivial fixed vectors and IG ≺ π then {π} is not isolated

from IG.
Assume now that G is locally compact Hausdorff second countable.
(ii) ⇔(iv) ⇔(v) ⇔(vi) Follow from Lemma 2.5.19.
(i)⇒(vii) Is a special case of (i)⇒(ii).
(vii)⇒(i) See [BdlHV08, Theorem 1.2.5] for a proof.

Lemma 2.5.27. A finite set S in a compact group G is a Kazhdan set if and only if
it is a Kazhdan set for the restriction of the regular representation λG to the invariant
subspace L2

0(G) (equivalently, the action of Γ = 〈S〉 < G by left multiplication on G
has a spectral gap).
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Proof. By Proposition 2.5.22, to prove that S is a Kazhdan set it is enough to
check that there is an ε > 0 such that for every unitary representation π without
non-trivial invariant vectors we have

∥∥π(µS±e )
∥∥ < 1− ε. This readily proved combining

Corollary 2.5.17 and Proposition 2.5.22.

A fundamental feature of Kazhdan property (T) is the following:

Theorem 2.5.28 (Kazhdan [Kaz67]24). Let G be a locally compact Hausdorff second
countable group and H a closed subgroup such that G/H admits a finite G-invariant
regular Borel measure. Then G has property (T) if and only if H does. In particular,
this holds if H = Γ is a lattice in G.

2.5.7 Strong Banach property (T)

Strong Banach property (T) was introduced by Lafforgue [Laf08, Laf09]. It is a
reinforcement of property (T) in that it implies that the trivial representation is not
only isolated from other unitary representations, but also from representations by
operators on a Banach space with slowly growing norm. We use the version of strong
property (T) relative to classes of Banach spaces, which is implicit in [Laf09], and
which appeared explicitly in [DLS16]. The latter article also gives a characterization
of strong property (T), which is what we take as its definition here.

A continuous length function of a topological group G is a continuous function
` : G→ [0,∞) such that `(g) = `(g−1) and `(gh) ≤ `(g) + `(h) for every g, h ∈ G.

Definition 2.5.29. Let E be a class of Banach spaces. A locally compact group G
has strong property (T) with respect to E , denoted by (Tstrong

E ), if for every length
function ` on G there exists a sequence of compactly supported symmetric Borel
measures µn on G such that for every Banach space E in E there exists a constant
t > 0 such that the following holds: for every representation π : G→ B(E) continuous
in the strong operator topology and satisfying ‖π(g)‖B(E) ≤ Let`(g) with L ∈ R+, the
sequence π(µn) converges in the norm topology on B(E) to a projection onto the
π(G)-invariant vectors in E.

The strong Banach property (T) of Lafforgue corresponds to taking E to be the
class of Banach spaces with nontrivial type. We need strong Banach property (T)
because of the following:

24We took the statement from [BdlHV08, Theorem 1.7.1]. We refer to said book for a proof.
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Proposition 2.5.30. If Γ is a finitely generated group with strong Banach property
(T) of Lafforgue, then every ergodic measure preserving action ρ : Γ y (X, ν) has
E-spectral gap for every Banach space E with non-trivial type. Moreover, this spectral
gap is uniform in the class of Banach spaces with nontrivial type, i.e. the constant ε in
the definition of spectral gap in Section 2.4.5 does not depend on E nor on the action.

This result is well known to experts. For the specific case of classes of uniformly
convex Banach spaces and isometric representations on these spaces (which is the
setting we will be using it), the result also follows from [DN17, Theorem 4.6].

2.6 Coarse geometry

D Let (X, dX) and (Y, dY ) be metric spaces. Given a constant C > 0, we say that
two maps f, g : (X, dX)→ (Y, dY ) are C-close if dY (f(x), g(x)) < C for every x ∈ X.
Recall that a subset Z of (X, dX) is C-dense in X if for every x ∈ X there exists a
z ∈ Z such that dX(x, z) < C.

2.6.1 Quasi-isometries

We use the following definition of quasi-isometry:

Definition 2.6.1. Let f : (X, dX) → (Y, dY ) be a (possibly discontinuous) map
between metric spaces and let A,L ≥ 0 be constants. We say that the map f is

• (L,A)-coarsely Lipschitz if

dY (f(x), f(x′)) ≤ LdX(x, x′) + A

for every x, x′ ∈ X;

• a (L,A)-quasi-isometric embedding if

L−1dX(x, x′)− A ≤ dY (f(x), f(x′)) ≤ LdX(x, x′) + A

for every x, x′ ∈ X;

• a (L,A)-quasi-isometry if it is (L,A)-coarsely Lipschitz and there exists an
(L,A)-coarsely Lipschitz quasi-inverse f̄ : (Y, dY )→ (X, dX) so that f ◦ f̄ and
f̄ ◦ f are A-close to idY and idX respectively.
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Two spaces (X, dX) and (Y, dY ) are quasi-isometric if there is a quasi-isometry between
them (this is clearly an equivalence relation).

We say that two sequences of metric spaces (Xn, dXn)n∈N and (Yn, dYn)n∈N are
uniformly quasi-isometric if there exist quasi isometries fn : Xn → Yn sharing the
same constants L,A.

Remark 2.6.2. In the definition of (L,A)-coarsely Lipschitz maps the constant L can
be smaller than 1. On the contrary, for a map to be an (L,A)-quasi-isometry or an
(L,A)-quasi-isometric embedding of a space with infinite diameter it follows from the
definition that the constant L must be at least 1.

In literature a slightly different definition of quasi-isometry is often used (coarse
surjective quasi-isometric embedding). We decided to use Definition 2.6.1 because it
makes the notation tidier when dealing with discrete fundamental groups (Chapters 3
and 4). The difference between the two definitions is very much inessential and it only
affects the values of the constants A and L as accounted for by the next lemma.

Lemma 2.6.3. If f : (X, dX) → (Y, dY ) is a (L,A)-quasi-isometry then it is a
(L,A)-quasi-isometric embedding and f(X) is A-dense in Y ( i.e. f is coarsely surjec-
tive). Vice versa, if f : (X, dX)→ (Y, dY ) is a (L,A)-quasi-isometric embedding and
f(X) is C-dense then f is a (L,D)-quasi-isometry where

D = max
{
A+ 2C,C, L(A+ C)

}
.

Sketch of proof. Let f̄ be a quasi-inverse of f . Then f(X) is A-dense because f ◦ f̄ is
A-close to idY . Moreover, f is an (L,A)-quasi-isometric embedding because we have

LdY
(
f(x), f(x′)

)
+ A ≥ dX

(
f̄(f(x)), f̄(f(x′))

)
> d(x, x′)− 2A

and we already noted that L ≥ 1.
For the other implication, for every y in Y let z(y) ∈ Y be a point in f(X) that is

at distance less than C from y and define f̄(y) to be a pre-image of z(y) under f (just
choose one). It is then clear that f ◦ f̄ is C-close to idY . It is also easy to verify that
f̄ is a (L,A+ 2C)-coarsely Lipschitz and that f̄ ◦ f is L(A+ C)-close to idX .

2.6.2 Nets and Vietoris-Rips graphs

Recall from Subsection 2.1.3 that an (r, ε)-net is a subset that is r-dense and ε-sepa-
rated.
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Remark 2.6.4. If Y ⊆ X is a (r, ε)-net and f : X → Z is a (L,A)-quasi-isometry, then
f(Y ) is a (Lr+ 2A, ε/L−A)-net in Z (the (ε/L−A)-separatedness is only meaningful
when ε > LA).

Metric spaces can be ‘discretised’ using Vietoris-Rips graphs:

Definition 2.6.5. For a fixed constant C > 0 the Vietoris-Rips graph at scale C of a
metric space X is the graph25 VR(C,X) having one vertex for every point x ∈ X and
an edge {x, y} if and only if d(x, y) < C.

The Vietoris-Rips graph of a continuous space X will have infinite degree. Still,
the Vietoris-Rips graph of a net of X tends to be well-behaved and provide a ‘good
coarse model’ for X.

Lemma 2.6.6. Let (X, dX) be a geodesic metric space and Y ⊆ X be r-dense. Then
for every C ≥ 3r the Vietoris-Rips graph VR(C, Y ) is connected and the inclusion
VR(C, Y ) ↪→ X is a (L,A)-quasi-isometry where

L = max
{1

r
, C
}

and A = max{1, r}.

Sketch of proof. For every x ∈ X let f(x) ∈ Y be a point such that and dX(x, f(x)) <

r. For any pair of points x, x′ ∈ X with dX(x, x′) < r we have dY (f(x), f(x′)) < 3r,
and hence f(x) and f(x′) are joined by an edge in VR(C, Y ).

Since X is geodesic, for every pair of points x, x′ ∈ X there exists a sequence
x = x0, . . . , xn = x′ with dX(xi−i, xi) < r for every i = 1, . . . , n and where n =

ddX(x, x′)/re+ 1. It follows that the sequence f(x0), . . . , f(xn) is a path in VR(C, Y ).
This proves both that VR(C, Y ) is connected and that the map f : (X, dX) →
VR(C, Y ) is (1/r, 1)-coarsely Lipschitz.

Moreover, if {y, y′} is an edge in VR(C, Y ) then dX(y, y′) < C. As VR(C, Y ) is
connected, the inclusion map is C-Lipschitz. This concludes the proof because the
compositions of these maps are respectively r-close to idX and equal to idY .

Proposition 2.6.7. A metric space X is quasi-isometric to a geodesic metric space
if and only if for every r-dense subset Y ⊂ X there is a constant C � r such that
VR(C, Y ) is connected and its inclusion in X is a quasi-isometry.

Sketch of proof. Since a connected graph is geodesic (in the sense of Remark 2.7.1),
when X is quasi-isometric to a connected Vietoris-Rips graph VR(C, Y ) there is
nothing to prove.

25See Section 2.7 for our conventions on graphs.
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Vice versa, let f : X → Z be a (L,A)-quasi-isometry into a geodesic metric space.
Note that for every C ≥ 3r the inclusion VR(C, Y ) ↪→ X is C-Lipschitz and has
r-dense image (as in the proof of Lemma 2.6.6). By Lemma 2.6.3, it is hence enough
to show that there are constants L′ and A′ such that

dX(y, y′) ≥ 1

L′
dVR(C,Y )

(
y, y′

)
− A′

for every y, y′ ∈ Y .
The set f(Y ) is (Lr + 2A)-dense in Z. Thus, for every C ′ ≥ 3(Lr + 2A) the

inclusion VR(C ′, f(Y )) ↪→ Z is a quasi-isometry by Lemma 2.6.6. If {f(y), f(y′)} is
an edge in VR(C ′, f(Y )) and C � r is such that C ≥ L(C ′ + A), then {y, y′} must
be an edge in VR(C, Y ) as well. For such a C, it follows that

dVR(C,Y )

(
y, y′

)
≤ dVR(C′,f(Y ))

(
f(y), f(y′)

)
� dZ

(
f(y), f(y′)

)
.

Composing the above inequality with that coming from the existence of the
quasi-inverse f̄ : Z → X, we deduce that the constants L′ and A′ that we seek for do
indeed exist (to produce optimal constants one would have to merge this proof with
the proof of Lemma 2.6.6).

Note that if a space X has bounded geometry (Definition 2.1.10) and Y ⊆ X is
ε-separated, then for every C > 0 the Vietoris-Rips graph VR(C, Y ) has bounded
degree (it has degree bounded by fY (C), in the notation of Remark 2.1.11).

Proposition 2.6.8. Let X be quasi-isometric to a geodesic metric space. Then X is
quasi-isometric to a space with bounded geometry if and only if one (and hence every)
Vietoris-Rips graph VR(C, Y ) has bounded degree, where Y ⊆ X is an (r, ε)-net with
C � r ≥ ε� 1 large enough.

Sketch of proof. One direction is clear because a graph has bounded geometry if
and only if it has bounded degree, and by Proposition 2.6.7 we know that X is
quasi-isometric to VR(C, Y ) as soon as Y is a (r, ε)-net set and C is large enough.

For the converse implication, Let f : X → Z be an (L,A)-quasi-isometry where Z
has bounded geometry and let Y ⊆ X be ε-separated for some large ε. Enlarging it if
necessary, we can assume that Y is a ε-net, and hence f(Y ) is (Lε+ A, ε/L− A)-net
in Z. To conclude it is hence enough to note that when ε is large enough the map f
induces an inclusion of graphs VR(C, Y ) ↪→ VR

(
LC + A, f(Y )

)
and the latter has

bounded degree.
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2.6.3 Coarse embeddings and equivalences

Definition 2.6.9. A map f : (X, dX) → (Y, dY ) between metric spaces is called
a coarse embedding if there are two increasing and unbounded control functions
ρ−, ρ+ : [0,∞)→ [0,∞), such that

ρ−
(
dX(x1, x2)

)
≤ dY

(
f(x1), f(x2)

)
≤ ρ+

(
dX(x1, x2)

)

for every x1, x2 ∈ X.
A coarse embedding f : (X, dX)→ (Y, dY ) is a coarse equivalence if it has a coarse

inverse; i.e. there exists a coarse embedding f̄ : (Y, dY )→ (X, dX) so that both f ◦ f̄
and f̄ ◦ f are at bounded distance from the identity functions.

Remark 2.6.10. As in Lemma 2.6.3, a coarse embedding is a coarse equivalence if and
only if it is coarsely surjective.

It is clear that quasi-isometric spaces are coarsely equivalent, and it turns out that
for (coarsely) geodesic spaces the converse is also true:

Lemma 2.6.11. If X is a geodesic metric spaces then every coarse embedding f : X →
Y is coarsely Lipschitz.

If (X, dX) and (Y, dY ) are quasi-isometric to geodesic metric spaces and X is
coarsely equivalent to Y , then X and Y are quasi-isometric.

Proof. Let x and y be any two points in a geodesic space X and let x = x0, . . . , xn = y

be a sequence of points with dX(xi, xi−1) ≤ 1 and n = ddX(x, y)e. Then we have

dY
(
f(x), f(y)

)
≤

n∑

i=1

dY
(
f(xi), f(xi−1)

)
≤ ddX(x, y)eρ+(1).

Let now X and Y be quasi-isometric to geodesic metric spaces X ′ and Y ′. Then
X ′ and Y ′ are coarsely equivalent. Since the coarse embedding X ′ → Y ′ and its coarse
inverse must be coarsely Lipschitz then they are quasi-isometries.

Remark 2.6.12. Note that it is not true that a coarse embedding must be a quasi-iso-
metric embedding (not even for geodesic spaces).

Since all the spaces we are going to work with are quasi-isometric to geodesic
metric spaces, we will often use ‘quasi-isometric’ and ‘coarsely equivalent’ as synonyms
for metric spaces. To take advantage of this redundancy of terminology, we use the
following:
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Definition 2.6.13. Two sequences of metric spaces (Xn, dXn)n∈N and (Yn, dYn)n∈N

are coarsely equivalent if there is a sequence of coarse equivalences fn : (Xn, dXn)→
(Yn, dYn) with the same control functions ρ− and ρ+.

Remark 2.6.14. Sequences of geodesic metric spaces are coarsely equivalent if and only
if they are uniformly quasi-isometric. That is, in our definition of coarse equivalence
we dropped the term ‘uniformly’ from the notation. This is not a standard convention,
but it makes sense in our context because when we study the coarse geometry of a
sequence of spaces we actually only care about its uniform aspects.

2.7 Graphs and expanders

Unless otherwise stated, we will only consider simplicial non-oriented graphs i.e.
a graph G is the datum of a set of vertices V(G) and a set of unoriented edges
E(G) ⊆

{
{v, w}

∣∣ v, w ∈ V(G), v 6= w
}
. We will usually denote graphs with

calligraphic letters.
A map of graphs, or a graph morphism f : G → G ′ is a map between the vertex

sets f : V(G)→ V(G ′) that sends edges to edges.
Given a vertex v ∈ V(G), its neighbours are the vertices w ∈ V(G) such that

{v, w} is an edge of G, and we denote the set of neighbours by ∂v. The degree
of v is deg(v) := |∂v| (this could be infinite). The degree of G is the supremum
deg(G) := supv∈V(G) deg(v). Most of the graphs that we are going to use will have
bounded degrees, but at times we will also have deal with graphs with unbounded
degree.

2.7.1 Graphs as metric spaces

A path of length n on a graph G is a sequence of vertices v0, . . . , vn where consecutive
vertices are joined by an edge. We say that G is connected if every two points are
joined by a path in G.

If G is a connected graph, we obtain a path metric on the set of vertices V(G)

by imposing that the distance between two vertices be the minimal length of a path
joining them. We will often consider connected graphs as metric spaces by considering
their vertex sets equipped with the path metrics.

In particular, when we write v ∈ G we mean that v is a vertex in G, and when we
talk about maps between a graph and another metric space X we actually mean maps
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between X and the vertex set of the graph. Note that a map between graphs seen as
metric spaces needs not be a graph morphism.

The set of neighbours of a vertex v ∈ G is equal to the set of points of G at distance
1 from v. In particular, a map between connected graphs (seen as metric spaces) is a
a graph morphism if and only if it is 1-Lipschitz, and it is an isomorphism if and only
if it is an isometry.

Remark 2.7.1. Every graph can be represented geometrically by gluing a copy of
the interval [0, 1] for every edge. Clearly, the graph is connected if and only if the
topological space thus obtained is connected, and when this is the case the topological
space can be given a natural path metric whose restriction to the vertex set coincides
with the graph path metric. For this reason we think of graphs as geodesic metric
spaces (even though, strictly speaking, they are only quasi-isometric to geodesic metric
spaces).

The girth of a graph G is the length of the shortest non-trivial loop in G (equivalently,
the length of the shortest simple closed loop).

2.7.2 Expanders

For every graph G and every set of vertices W ⊂ V(G) we will denote by ∂W the
external vertex boundary

∂W :=
{
v ∈ V(G)rW

∣∣ ∃w ∈ W s.t. {v, w} is an edge
}
.

Note that ∂W is equal to the set of vertices at distance 1 from W . Equivalently, it
can be expressed in terms of its neighbourhood of radius 1:

∂W = N1(W )rW.

We will denote by ∂int the internal vertex boundary

∂intW :=
{
w ∈ W

∣∣ ∃v ∈ V(G)rW s.t. {v, w} is an edge
}
.

Note that the internal vertex boundary of W coincides with the external vertex
boundary of its complement V(G)rW . In particular, we have

∂intW = N1

(
V(G)rW

)
∩W.

We define the Cheeger constant of the graph G as the infimum

h(G) := inf

{ |∂W |
|W |

∣∣∣∣W ⊂ V(G) finite, |W | ≤ 1

2

∣∣V(G)
∣∣
}

(if the graph is infinite the condition on the cardinality of the set W is vacuous).

62



Definition 2.7.2. A sequence of finite graphs (Gn)n∈N is a family of expanders if
|V(Gn)| → ∞ and there are two constants C, ε > 0 so that every graph Gn has degree
bounded above by C and Cheeger constant h(Gn) at least ε.

Remark 2.7.3. We will sometimes be informal and simply write ‘expander’ instead of
‘family of expanders’. Even when we do so, we still think of it as a family of spaces
and our usual conventions applies (e.g. if we say that an expander does not coarsely
embed in a Banach space we mean that the corresponding family of graphs does not
uniformly coarse embed in that Banach space).

Remark 2.7.4. In the literature the Cheeger constant is usually defined using the
edge-boundary, we chose to use this less standard definition because it is more
convenient for our purposes. The two notions are coarsely equivalent when dealing
with graphs with bounded degree.

For families of graphs with bounded degree the property of being expanders is an
invariant of coarse equivalence:

Lemma 2.7.5. Let (Xn)n∈N and (Yn)n∈N be two coarsely equivalent sequences of
(connected) graphs with uniformly bounded degree. Then Xn is a family of expanders
if and only if so is Yn.

Proof. As both Xn and Yn are assumed to have uniformly bounded degree, it is enough
to show that if the graphs Yn do not have a uniform bound on their Cheeger constants
then neither do the Xn’s.

Let fn : Xn → Yn be a sequence of coarse embeddings with A-dense image and
control uniform functions ρ− and ρ+. Assume that there is a sequence of subsets
Fn ⊂ Yn such that |Fn| ≤ |Yn|/2 and |∂Fn|/|Fn| → 0, we claim that the sequence of
their preimages Tn := f−1

n (Fn) behaves similarly in Xn.
First of all we want to show that the sets Tn are large, so let us consider the subsets

of ‘very internal’ vertices of Fn:

In = {w ∈ Fn | B(w,A) ⊆ Fn} .

Since fn is coarsely surjective, we have that ∀w ∈ In there exists v ∈ Xn such that
d(f(v), w) < A and hence v ∈ Tn. Note that if w,w′ ∈ Fn have distance d(w,w′) ≥ 2A

and v, v′ ∈ Tn are such that d(f(v), w) < A and d(f(v′)w′) < A then v 6= v′. We
deduce that the image of Tn contains at least |In|/D2A vertices, where D is the bound
on the degree of the graphs.
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Since we have
In = Fn r

(⋃{
B(w,A)

∣∣ w ∈ ∂Fn
})
,

we deduce:
|Tn| ≥

|In|
D2A

≥ |Fn| −D
A|∂Fn|

D2A
≥ λn|Fn|

for some sequence of values λn that approach 1/D2A as n increases.
We now wish to bound |∂Tn| linearly with |∂Fn|. The bounding function ρ− is

unbounded, thus there exists a r > 0 so that ρ−(r) ≥ 1. Therefore, if two vertices v, v′

in Xn have distance d(v, v′) ≥ r then they have different images fn(v) 6= fn(v′). We
deduce that the image of ∂Tn contains at least |∂Tn|/Dr vertices. Note that a vertex
v is in ∂Tn if and only if it lies outside Tn and it neighbours with a vertex v′ in Tn. In
particular, f(v′) ∈ Fn must be within distance A+ ρ+(1) of ∂Fn and hence fn(y) is at
most at distance κ := 2ρ+(1) + A from ∂Fn. Therefore we have

|∂Tn|
Dr

≤ |∂Fn|Dκ,

thus we get:
|∂Tn|
|Tn|

≤ Dκ+r

λn

|∂Fn|
|Fn|

and right hand side tends to zero.
The only issue now is that Tn might have more than |Xn|/2 elements. If that is

the case we only need to take its complement. Indeed, let On be the set of vertices
that are ‘very external’ from Fn

On = {w /∈ Fn | B(w,A) ⊆ Yn r Fn} .

As |Xn r Tn| ≥ |f−1
n (On)|, by the same argument of above we have

|Xn r Tn| ≥
|On|
D2A

≥ |Yn r Fn| −DA|∂Fn|
D2A

≥ λn|Yn r Fn| ≥ λn|Fn|

and we can conclude because

|∂(Xn r Tn)| ≤ D|∂Tn|.

With a slight abuse of notation, we give the following:

Definition 2.7.6. A sequence of metric spaces
(
Xn, dXn

)
n∈N forms a family of metric

expanders if it is coarsely equivalent to a family of expander graphs Xn.
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Remark 2.7.7. Note that Lemma 2.7.5 implies that a family of graphs with uniformly
bounded degrees form a family of metric expanders if and only if it is a genuine family
of expander graphs (Definition 2.7.2).

Remark 2.7.8. Let (Xn, dXn)n∈N be a sequence of metric spaces that are uniformly
quasi-isometric to a sequence of geodesic metric spaces. It follows from Lemma 2.7.5,
Proposition 2.6.7 and Proposition 2.6.8, that (Xn, dXn)n∈N forms a sequence of metric
expanders if and only if the sequence of Vietoris-Rips graphs VR(C, Yn) is a family of
expanders, where Yn ⊆ Xn is an (r, ε)-net for some fixed C � r ≥ ε� 1 large enough.

2.7.3 Superexpanders

One of the many remarkable features of expander graphs is that it is not possible
to embed them into any Hilbert space without greatly distorting the metric. More
precisely, the following is a well known26 (see [Mat97] and also [Oza04, Appendix A]):

Theorem 2.7.9. A family of expanders does not coarsely embed into any Lp space
for 1 ≤ p <∞.

Remark 2.7.10. It immediately follows from Theorem 2.7.9 that metric expanders do
not coarsely embed into any Lp space.

It is sometimes possible to prove stronger non-embeddability results for expanders.
We will use the following:

Definition 2.7.11. A family of superexpanders is a family of expanders that cannot
be coarsely embedded into any uniformly convex Banach space.

Remark 2.7.12. In Definition 2.7.11 it is necessary to restrict one’s attention to some
subclass of Banach spaces, because every metric spaceX can be isometrically embedded
in the Banach space of continuous functions on X equipped with the supremum norm.
The class of uniformly convex Banach spaces is a good candidate because it retains
aspects of Euclidean geometry while being still a very large class (it is also a natural
choice to make in the context of the Baum-Connes conjecture).

Remark 2.7.13. Often, superexpanders are defined as expanders that satisfy some
strong Banach-valued spectral gap. It is always true that the existence of such a
spectral gap implies that there cannot exist embeddings into uniformly convex Banach
spaces (and hence this definition is stronger than the one we gave). Still, the two
conditions are probably not equivalent in general.

26In [Mat97] it is proved that expanders do not coarsely embed into any `p-space. From this it is
possible to deduce that they do not coarsely embed into any Lp-space e.g. using Ostrovskii’s results
about coarse embeddings of locally finite metric spaces into Banach spaces.
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The following is a major open question (attributed to V. Lafforgue):

Question 2.7.14. Is every family of expanders a superexpander?

It is interesting to note that, while there are no known examples of expanders that
are not superexpanders, it is usually quite difficult to construct new explicit families
of superexpanders.

2.8 Box spaces

The precise notations and conventions we use in this sections are not quite standard,
but are convenient for our purposes.

2.8.1 Schreier coset graphs

Given a subgroup Λ′ < Λ of a finitely generated group Λ = 〈S〉, let Λ/Λ′ = {hΛ′ ⊂
Λ | h ∈ Λ} be the set of left cosets and Λ′\Λ = {Λ′h ⊂ Λ | h ∈ Λ} the set of right
cosets of Λ′ in Λ. The (left) Schreier coset graph (or simply (left) Schreier graph) is
the graph Schr(Λ′\Λ, S) whose vertex set is the set of right cosets Λ′\Λ and where
two vertices {Λ′h1,Λ

′h2} form an edge if and only if Λ′h1 = Λ′h2s for some s ∈ S±.
The left Schreier graph with respect to the trivial group {e} coincides with the

left Cayley graph Cay(Λ, S). If N C Λ is a normal subgroup, then right cosets are
also left cosets and the Schreier graph Schr(N\Λ, S) coincides with the Cayley graph
of the quotient Cay(Λ/N, S), where S is the image of the generating set S under the
quotient map.

Similarly, the right Schreier graph Schrr(Λ/Λ′, S) is the graph whose vertices are
the left cosets Λ/Λ′ and such that {h1Λ′, h2Λ′} is an edge if and only if h1Λ′ = sh2Λ′

for some s ∈ S±. The right Schreier graph with respect to the trivial group {e}
coincides with the right Cayley graph Cayr(Λ, S). If N C Λ is a normal subgroup,
the right Schreier graph Schrr(Λ/N, S) coincides with the right Cayley graph of the
quotient Cayr(Γ/N, S).

The group Λ has a natural left action on the set of left cosets, but this does not
induce an action by graph morphisms on the right Schreier graph. Instead, it defines
an action by maps with bounded displacement. The same happens for the right action
on the set of right cosets and the left Schreier graph.

Note that the inverse map hΛ′ 7→ Λ′h−1 gives an isomorphism of graphs between
Schrr(Λ/Λ′, S) and Schr(Λ′\Λ, S).
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2.8.2 Finite index subgroups and box spaces

Let Λ be a (finitely generated) discrete group. If Λ′ is a finite index subgroup, we
denote it by Λ′ <f Λ. The index of a subgroup is denoted by [Λ : Λ′].

A sequence of finite index subgroups Λn <f Λ with n ∈ N is residual if
⋂
n∈N Λn =

{e}. Such a sequence is a filtration if it is nested: Λn+1 <f Λn for every n ∈ N. A
filtration is normal if it is composed by groups that are normal in Λ (Λn Cf Λ for
every n ∈ N). The group Λ is residually finite if it admits a residual sequence (or,
equivalently, a residual filtration or a residual normal filtration).

Definition 2.8.1. Given a finitely generated group Λ = 〈S〉 and sequence (Λk)k∈N

of finite index subgroups of increasing index, the (left) box space �(Λk)Λ of a finitely
generated group Λ is the family of left Schreier graphs

(
Schr(Λk/Λ, S)

)
k∈N.

A (left) box space is residual if it comes from a residual sequence of subgroups;
it is nested if it comes from a filtration; and it is normal if it comes from sequence
of normal subgroups (in which case the Schreier graphs are Cayley graphs of the
quotients).

The (residual, nested, normal) right box spaces are defined analogously.

Box spaces are usually thought of as sequences of metric spaces. In particular,
in this setting it does not matter whether we had taken the left or right box spaces
as they are isometric. Note also that, when the generating set is not specified, box
spaces are only defined up to coarse equivalence. Our usual conventions for coarse
equivalences of families of metric spaces apply to box spaces as well.

Remark 2.8.2. Quite often in literature only residual nested normal box spaces are
considered (and they are hence just called box spaces). Moreover, box spaces are
often made into a single metric space (as opposed to a family of spaces) by giving the
disjoint union of Cayley graphs Cay(Λ/Λk) a metric by imposing that the distance
between two components be larger than the sum of their diameters. One can hence
study the coarse geometry of a box space treating it as a single object.

As long as one is coherent, it does not matter what viewpoint is taken. Indeed, it
is shown in [KV17] that if two box spaces �(Λk)Λ and �(Γk)Γ are coarsely equivalent
(when seen as metric objects) then, possibly discarding a finite number of indices, one
has that Cay(Λ/Λk) is uniformly quasi-isometric to Cay(Γ/Γk) (and therefore they are
coarsely equivalent as sequences of metric spaces). The converse also holds because
the distance between different components is bound to go to infinity.
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2.8.3 Box spaces and expanders

A sequence (Λk)k∈N of finite index proper subgroups of a group Λ is said to have
property (τ) if the (left) actions on the sets of (left) cosets have uniform spectral
gap (Subsection 2.4.4). Here the coset sets are equipped with the (renormalised)
counting measure. It follows from Proposition 2.5.20 and Remark 2.5.21 that the
sequence (Λk)k∈N has property (τ) if and only if the sequence of representations
Λ→ U

(
L2

0(Λ/Λk)
)
are isolated from the trivial representations (i.e. admits a Kazhdan

set). If (Nk)k∈N is a sequence of normal proper finite index subgroups, this is also
equivalent to saying that the trivial representation of Λ is isolated in the family of
irreducible unitary representations of Λ factoring through Λ/Λk for some k ∈ N. In
particular, note that any sequence of subgroups in a group with property (T) has
property (τ).

The following theorem was the first source of explicit expander graphs (Defini-
tion 2.7.2):

Theorem 2.8.3 (Margulis). A box space �(Λk)Λ is a family of expanders if and only
if the sequence (Λk)k∈N has property (τ).

Remark 2.8.4. We will obtain a proof of Theorem 2.8.3 as a corollary of a more general
construction (Remark 6.1.7). In some sense, one could say that the bulk of this thesis
is a generalisation of this theorem.

Similarly, it is the case that when the actions Λ y Λ/Λk have uniform strong
Banach valued spectral gaps, then the box space �(Λk)Λ is a superexpander. In
particular this happens any time the group Λ has the strong property (T) of Lafforgue.

In fact, V. Lafforgue was the first to produce examples of superexpanders (as a
consequence of his work on strong property (T) and the Baum-Connes conjecture).
He showed that if Λ is a cocompact lattice in an almost simple higher rank algebraic
group over a non-Archimedean local field, and (Λk)k∈N is a normal residual filtration
of Λ with trivial intersection, then the box space �(Λk)Λ is a superexpander [Laf08]
(precisely because in this case Λ has Lafforgue’s strong Banach property (T) by
[Laf08, Laf09, Lia14]).

Definition 2.8.5. A Lafforgue expander is a normal nested residual box space of a
lattice in an almost simple higher rank algebraic group over a non-Archimedean local
field.
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Chapter 3

Discrete fundamental groups for
metric spaces

Most of the material of this chapter (with the exception of the coarse-geometric
statements) is included in [Vig17b].

3.1 Definition and coarse geometry

3.1.1 Discrete fundamental groups

Let X be a metric space and fix a parameter θ > 0. Recall from Subsection 2.1.2 that
a discrete path at scale θ (or θ-path) is a θ-Lipschitz map Z : [n]→ X (equivalently,
it is an ordered sequence of points (z0, . . . , zn) in X with d(zi, zi+1) ≤ θ). We will
continue to use the notation Z∗ to denote the reverse θ-path (i.e. the θ-path obtained
by reversing the ordering of the tuple of points defining Z).

We say that a θ-path Z ′ : [m] → X is a lazy version (or lazification) of Z if it
is obtained from it by repeating some values, i.e. if m > n and Z ′ = Z ◦ f where
f : [m]→ [n] is a surjective monotone map.

Given two θ-paths Z1 and Z2 of the same length n, a free θ-grid homotopy between
them is a θ-Lipschitz map H : [n]× [m]→ X such that H( · , 0) = Z1 and H( · ,m) = Z2

(here the product [n]× [m] is equipped the `1-metric). A θ-grid homotopy is a free
θ-grid homotopy so that H(0, t) = Z1(0) = Z2(0) and H(n, t) = Z1(n) = Z2(n) for
every t ∈ [m].

Definition 3.1.1. Two θ-paths Z1 and Z2 are θ-homotopic (denoted by Z1 ∼θ Z2) if
they are equivalent under the equivalence relation induced by lazifications and θ-grid
homotopies. Equivalently, Z1 ∼θ Z2 if and only if there exist lazy versions Z ′1 and Z ′2
of Z1 and Z2 which are homotopic via a θ-grid homotopy.
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If the endpoint of a θ-path coincides with the starting point of a second θ-path,
the two θ-paths can be concatenated. Note that for every θ-path Z, the concatenation
ZZ∗ is θ-homotopic to the constant path Z(0). Since the operation of concatenation
is clearly compatible with θ-homotopies, we can make the following definition:

Definition 3.1.2 ([BCW14]). Let x0 be a base point in a metric space X. The
discrete fundamental group at scale θ (or θ-fundamental group) is the group π1,θ

(
X, x0

)

consisting of θ-homotopy classes of closed θ-paths with endpoints x0, equipped with
the operation of concatenation.

Remark 3.1.3. Just as for the usual fundamental group, if X is a θ-connected metric
space then the isomorphism class of the discrete fundamental group does not depend
on the choice of the base point. Moreover, if x0 and x′0 are points at distance at most
θ, then the map sending a θ-path (x0, x1, . . . , x0) to the θ-path (x′0, x0, x1, . . . , x0, x

′
0)

induces a canonical isomorphism I(x0,x′0) : π1,θ(X, x0)
∼=−→ π1,θ(X, x

′
0).

3.1.2 Coarse geometry on discrete paths

One can also think of the θ-fundamental group as the quotient of the fundamental
group where short cycles are ignored1 (see Remark 3.2.2). In particular, it is no
surprise that one can try to use discrete fundamental groups to construct invariants
of quasi-isometries.

If f : (X, dX)→ (Y, dY ) is a (L,A)-coarse Lipschitz map and θ′ ≥ Lθ + A, then f
induces a homomorphism f∗ : π1,θ(X, x0)→ π1,θ′(Y, f(x0)) by composition: f∗([Z]) :=

[f ◦ Z]. We collect some basic results about the interplay between quasi-isometries
and discrete fundamental groups in the following lemma (some of these statements
are also proved in [BCW14]).

Lemma 3.1.4. Let (X, dX) and (Y, dY ) be 1-geodesic metric spaces; x0 ∈ X a fixed
base point; f : (X, dX)→ (Y, dY ) an (L,A)-coarse Lipschitz map; θ, θ′ > 1 constants
with θ′ ≥ Lθ + A and f∗ : π1,θ(X, x0) → π1,θ′(Y, f(x0)) the induced homomorphism.
Then the following hold.

(i) If g : (X, dX) → (Y, dY ) is (L,A)-coarse Lipschitz and θ′-close to f then we
have g∗ = I(f(x0),g(x0)) ◦ f∗, where I(f(x0),g(x0)) is the canonical isomorphism of
Remark 3.1.3.

1 This is the reason why discrete fundamental groups are also known as coarse fundamental groups
in the literature
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(ii) If f is an (L,A)-quasi-isometry, and θ ≥ L+ A then f∗ is surjective.

(iii) If θ ≤ θ′ then (idX)∗ : π1,θ(X, x0)→ π1,θ′(X, x0) is surjective.

(iv) If f is an (L,A)-quasi isometry, (idX)∗ : π1,θ(X, x0) → π1,Lθ′+A(X, x0) is an
isomorphism and θ ≥ L+ A, then f∗ is an isomorphism.

Proof. (i): Given a closed θ-path Z with endpoints x0, the path I(g(x0),g(x0)) ◦ g(Z) is
a lazification of g(Z). It is now enough to notice that the paths I(f(x0),g(x0)) ◦ f(Z)

and I(g(x0),g(x0)) ◦ g(Z) are θ′-grid homotopic because the maps f and g are θ′-close.
(ii): Since (Y, dY ) is 1-geodesic, any θ′-path Z ′ in Y is θ′-homotopic to a 1-path.

Indeed, one can concatenate the 1-paths realising the distance between consecutive
points Z ′(i), Z ′(i+ 1) obtaining this way a 1-path that is θ′-homotopic to Z ′.

Given an element [Z ′] ∈ π1,θ′(Y, f(x0)), we can assume that Z ′ is a 1-path. Let f̄
be a quasi-inverse of f , then f̄(Z ′) is a (L+ A)-path and hence a θ-path. It is then
easy to see that I(f̄(f(x0)),x0)(f̄(Z ′)) is a closed θ-path based at x0 whose image under
f is θ′-homotopic to Z ′.

(iii): This is a special case of (ii).
(iv): The quasi-inverse f̄ induces a homomorphism f̄∗ from π1,θ′(Y, f(x0)) to

π1,Lθ′+A(X, f̄ ◦ f(x0)). As f̄ ◦ f is A-close to idX and therefore θ-close, by (i) we have
that (f̄ ◦ f)∗ coincides with I(x0,f̄◦f(x0)) ◦ (idX)∗ and it is hence an isomorphism. The
claim follows because f∗ is surjective by (ii).

Remark 3.1.5. Analogous statements hold for coarse equivalences and coarse embed-
dings (this is relevant only for people wishing to study the discrete fundamental groups
of spaces that are not quasi-isometric to geodesic metric spaces).

3.2 The interplay between continuous and discrete

3.2.1 Discretisations of continuous paths

Given a continuous path γ : [0, 1]→ X and a sequence of times 0 = t0 ≤ t1 ≤ · · · ≤
tn = 1, we say that the discrete path

(
γ(t0), . . . , γ(tn)

)
is a θ-discretisation of γ

if γ(ti−1, ti) ⊆ B
(
γ(ti−1), θ

)
for every i = 1, . . . , n. We will denote this θ-path by

γ̂θ(t0,...,tn). We will systematically use the following simple lemma:

Lemma 3.2.1. Every continuous path admits a θ-discretisation. If two paths α and
β are (freely) homotopic then any two discretisations α̂θt0,...,tn and β̂θt′0,...,t′m are (freely)
θ-homotopic.
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Proof. Fix the parameter θ > 0. For any continuous path γ : [0, 1] → X consider
the open cover of [0, 1] given by the preimages γ−1

(
B(x, θ

2
)
)
with x ∈ X. By the

Lebesgue’s Number Lemma, there exists N ∈ N large enough so that for every t ∈ [0, 1]

the segment [t− 1/N, t+ 1/N ] is fully contained in one of those open set. It follows
that letting ti := i/N for i = 0, . . . , N yields a θ-discretisation of γ.

It remains to prove that continuous homotopies induce discrete homotopies. Let
H : [0, 1]2 → X be an homotopy between two paths α and β. As above, we can use
Lebesgue’s Number Lemma to deduce that there exists N ∈ N large enough so that
for every (t, s) ∈ [0, 1]2 the image under H of the ball B

(
(t, s), 1/N

)
has diameter

smaller than θ. Consider the map Ĥθ : [N ]2 → X defined by

Ĥθ(i, j) := H

(
i

N
,
j

N

)
.

Then the maps Ĥθ(·, 0) : [N ]→ X and Ĥθ(·, N) : [N ]→ X are θ-discretisations of α
and β respectively, and Ĥθ is a free θ-grid homotopy between them.

To conclude the proof of the lemma it is hence enough to show that any two
θ-discretisations of the same path are θ-homotopic. This is readily done. Let γ̂θt0,...,tn and
γ̂θt′0,...,t′m

be two θ-discretisations of a path γ. We can assume that the inequalities t0 <
· · · < tn are strict and—up to choosing a common refinement for the discretisations—we
can also assume that n ≤ m and that for every ti there exists a j ≥ i so that ti = t′j.
We now define a surjective function f : [m] → [n] letting f(j) := max{i | ti ≤ t′j}.
Then the θ-path

(
γ(tf(0)), . . . , γ(tf(m))

)
is a lazification of

(
γ(t0), . . . , γ(tn)

)
and it is

θ-homotopic to (γ(t′0), . . . , γ(t′m)) via a θ-grid homotopy consisting of a single step.
The same proof clearly implies the statement for free homotopies as well.

From Lemma 3.2.1 it follows that there is a well-defined θ-discretisation map

̂θ : π1(X, x0) → π1,θ

(
X, x0

)
. Since the concatenation of the discretisations of two

paths is a discretisation of the concatenation of the paths, this map is a homomorphism.
For convenience, we will generally drop the specific times ti from the notation and

simply write γ̂θ to denote a θ-discretisation of γ.

Remark 3.2.2. Note that when the image of a continuous path has diameter smaller
than θ then its θ-discretisation will be trivially θ-homotopic to a constant θ-path.
Moreover, every closed θ-path of length at most 4 is θ-homotopic to a constant path
because (z0, z1, z2, z3, z4 = z0) ∼θ (z0, z1, z1, z0, z0) ∼θ (z0, z0, z0, z0, z0).

In some sense, the above is the only way in which loops become null-homotopic in
π1,θ. For instance, it is proved in [BKLW01] that the 1-fundamental group of a graph
is isomorphic to the fundamental group of the graph quotiented by the normal group
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generated by all the loops of length at most 4 in the graph. This can be generalised to
all geodesic metric spaces (Corollary 4.3.6), but we decided to postpone this discussion
to Subsection 4.2.2, where we will prove it in more generality for geodesic warped
metric spaces.

3.2.2 Relations with the fundamental group at small scale

This subsection and the next section are an excursus on the relation between the
fundamental group of a metric space and the ‘limit as θ tends to 0’ of its discrete
fundamental groups π1,θ(X, x0). Albeit not being relevant to the rest of this thesis
(where we focus on large scale properties), we developed these contents in in an attempt
to answer some questions raised in [BCW14].

We already noted that, given a pair θ′ ≤ θ, we have a natural homomorphism
π1,θ′(X, x0)→ π1,θ(X, x0). In particular, it makes sense to consider the inverse limit
lim←− π1,θ(X, x0) of this system of groups (see Remark 2.2.11). Note that, for θ′ < θ, any
θ′-discretisation γ̂θ′t0,...,tn of a continuous path γ is also a θ-discretisation. Therefore
Lemma 3.2.1 also implies that the following diagram commutes:

π1(X, x0)

π1,θ′(X, x0) π1,θ(X, x0).

̂θ′ ̂θ

and hence the discretisation maps induce a group homomorphism of the inverse limit

̂ : π1(X, x0)→ lim←− π1,θ(X, x0). We will denote the image of (the homotopy class of) a
continuous path γ by γ̂.

N.B. This use of the symbols ̂ and γ̂ is specific of this subsection and the subsequent
section. From Chapter 4 onward they will assume a different meaning. We are
confident that no confusion will arise, because the context is going to be quite clearly
different.

It is natural to ask when the discretisation map ̂ : π1(X, x0)→ lim←− π1,θ(X, x0) is
an isomorphism (see also [BCW14, Question 3]). In the next theorem we prove that
this is the case for a large class of well-behaved spaces. The conditions needed for
the proof of Theorem 3.2.3 are (in some sense) sharp; see Section 3.3. Recall that
u.l.p.c. and u.s.l.s.c are short for ‘uniformly locally path connected’ and ‘uniformly
semi-locally path connected’ respectively (Definitions 2.1.1 and 2.1.4).
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βn,m−1
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Figure 3.1: Constructing a continuous homotopy

Theorem 3.2.3. If a connected metric space X is u.l.p.c. and u.s.l.s.c. then the
discretisation map ̂ : π1(X, x0)→ lim←− π1,θ(X, x0) is an isomorphism.

Proof. Injectivity : since X is u.s.l.s.c., there exists ε > 0 so that every loop contained
in a ball of radius at most ε is null-homotopic in X. Moreover, since X is u.l.p.c.
there exists a 0 < δ ≤ ε/2 so that any two points in B(x, δ) are joined by a path in
B(x, ε/2). Fix a parameter 0 < θ < δ and let γ be a continuous closed path whose
θ-discretisation γ̂θ is trivial in π1,θ(X, x0); we claim that γ is null-homotopic in X.

We can assume that γ̂θ : [n]→ X is homotopic to the constant path via a θ-grid
homotopy H : [n]× [m]→ X. By construction, for every 0 ≤ i ≤ n− 1 and 0 ≤ j ≤ m

there exist continuous paths αi,j joining the point H(i, j) with H(i+ 1, j) and having
its image completely contained in the ball of radius ε/2 centred at H(i, j). Similarly,
for every 0 ≤ i ≤ n and 0 ≤ j ≤ m − 1 there exist analogous paths βi,j going from
H(i, j) to H(i, j + 1). Here we assume that the paths αi,0 are the subpaths of γ that
are given by the choice of the discretisation γ̂θ, while the paths αi,m, β0,j and βn,j are
constant.

We can concatenate these paths to obtain a path ξi,j joining x0 to H(i, j) letting
ξi,j :=

[
(β0,0) · · · (β0,j−1)

][
(α0,j) · · · (αi−1,j)

]
. We now define some closed loops as

follows (see Figure 3.1):

ηi,j := (ξi,j)(αi,j)(βi+1,j)(α
−1
i,j+1)(β−1

i,j )(ξ−1
i,j ).

By construction, the closed path (αi,j)(βi+1,j)(α
−1
i,j+1)(β−1

i,j ) is contained in the ball
of radius ε centred at H(i, j). Therefore, the loops ηi,j are null-homotopic and it is
easy to see that the path γ is homotopic to the product of the ηi,j (concatenating
them in the appropriate order), and therefore [γ] is the trivial element in π1(X, x0). It
follows that the map ̂θ is injective and, a fortiori, ̂ is injective as well.
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Surjectivity: a generic element of lim←− π1,θ(X, x0) can be represented by a family
(Zθ)θ>0—where Zθ is a closed θ-path based at x0—so that for every θ′ < θ we have
Zθ′ ∼θ Zθ. Again, since X is u.l.p.c., for every θ > 0 there exists a 0 < δ(θ) ≤ θ such
that any two points in B(x, δ(θ)) are joined by a path in B(x, θ) (in what follows
we assume δ(θ) to be a decreasing function of θ). It follows that the points of the
δ(θ)-path Zδ(θ) can be joined with some small continuous paths and, concatenating
these paths, we obtain a continuous loop γθ and we see that Zδ(θ) is a θ-discretisation
of γθ.

From the proof of injectivity it follows that there exists a θ̄ > 0 small enough so
that ̂θ̄ is injective. Note that for every 0 < θ < θ̄ we have

γ̂θ
θ ∼θ Zδ(θ) ∼δ(θ̄) Zδ(θ̄) ∼θ̄ γ̂θ̄ θ̄.

It follows that γ̂θθ and γ̂θ̄
θ̄ are θ̄-homotopic and hence γθ and γθ̄ are homotopic.

Therefore
γ̂θ̄

θ ∼θ γ̂θθ ∼θ Zδ(θ) ∼θ Zθ
for every 0 < θ < θ̄, and hence γ̂θ̄ = ([Zθ])θ>0 ∈ lim←− π1,θ(X, x0).

Applying Lemma 2.1.6, we obtain the following:

Corollary 3.2.4. If a connected space X is l.p.c., s.l.s.c. and compact then the
discretisation ̂ : π1(X, x0)→ lim←− π1,θ(X, x0) is an isomorphism.

Note that from the proof of Theorem 3.2.3 it follows that if X is u.l.p.c. and
u.s.l.s.c., then the projections lim←− π1,θ(X, x0) → π1,θ(X, x0) are injective for every θ
small enough. However, the following example shows that such projections need not
be surjective:

Example 3.2.5. Consider in R3 = R × C the cylindrical shell whose bases are disks
of radius 1 centred at (0, 0, 0) and (1, 0, 0). Let X0 ⊂ R3 be the space obtained by
adding to the cylinder the segments joining

(
1
2
, e

kπ
4
i
)
with

(
1
2
, 1

2
e
kπ
4
i
)
for k = 1, . . . , 8.

Let X1 ⊂ R3 be a copy of X0, but translated by 1 on the x coordinate and with the y
and z coordinates rescaled by a half. Similarly, X2 is a translated and rescaled copy
of X1 and so on. Finally, let X :=

⋃
n∈NXn be the ‘telescope space’ obtained taking

the union all such cylinders (with the ambient metric of R3). See Figure 3.2.
The space X is u.s.l.s.c. (it is simply connected). To see that it is also u.l.p.c, note

that if it was not for the segments pointing toward the centre of the cylindrical shells
one could just let δ = ε to obtain the local connectedness. It is hence enough to prove
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· · ·

X0

X1

X2

Figure 3.2: Example of space with non surjective projections

that the disjoint union of the middle sections Yn := Xn ∩ {(n+ 1/2, y, z) | y, z ∈ R} is
u.l.p.c.

For a fixed ε > 0 let n̄ ∈ N be the largest number such that ε < 2−n̄. For every
n > n̄ the (path-connected) space Yn is contained in the ball of radius ε centred at
any of its points. It is hence enough to deal with the spaces Yn with n ≤ n̄. Here,
letting δ = 2−n̄

∥∥1
2
− 1

2
e
π
4
i
∥∥ will do the job because the balls of radius δ in Yn are path

connected.
We can hence use Theorem 3.2.3 to deduce that lim←− π1,θ(X) = {0}. Still, we

claim that for every n ∈ N the discrete path Zn in Xn ⊂ X given by the points(
n+ 1

2
, 1

2n+1 e
kπ
4
i
)
represents a non trivial θ-path in π1,θ(X) for θ = 2−n

∥∥1
2
− 1

2
e
π
4
i
∥∥.

Indeed, we claim that all the points
(
n + 1

2
, 1

2n+1 e
kπ
4
i
)
must belong to the image

of any θ-path θ-homotopic to Zn (and it is therefore a non-constant θ-path). Note
that if Z = (z1, . . . , zm) is a θ-path such that for some j < m we have zj = 1

2n+1 e
kπ
4
i

and zj+1 = 1
2n+1 e

(k+1)π
4

i, and Z ′ = (z′1, . . . , z
′
m) is a θ-path that is θ-close to Z then we

must have z′j = zj and z′j+1 = zj+1 because the only pair of θ-close points that are
also θ-close to zj and zj+1 are zj and zj+1 themselves. The claim follows because the
paths in a θ-grid homotopy are a sequence of θ-close paths.

One may think that it should be true in general that when the limit homomorphism

̂ : π1(X, x0)→ lim←− π1,θ(X, x0) is an isomorphism then the maps ̂θ should be injective
for θ small enough. The next example shows that this is not the case.

Example 3.2.6. Let 1
2n
· S1 be the circle of radius 1/2n in R2 equipped with the metric

dn induced from R2 and let X :=
∏

n∈N
1

2n
· S1 equipped with the `1-metric, i.e.

d
(
(xn)n∈N, (yn)n∈N

)
=
∑

n∈N dn(xn, yn). Note that this is indeed a metric on the set∏
n∈N S1 because the series

∑
n∈N 2−n converges. We claim that, with the topology

coming from this metric, X is homeomorphic to the (S1)N with the product topology.
To prove that a topology τ ′ is at least as fine as a topology τ defined on the same

set X, it is enough to show that for every x ∈ X and U ∈ τ containing x, there exists
a U ′ ∈ τ ′ such that x ∈ U ′ ⊆ U . In our case, the projections pn : X → 1

2n
· S1 are
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1-Lipschitz and therefore the topology coming from the metric is at least as fine as
the product topology. To prove that the two topologies coincide it is hence enough to
show that the product topology is at least as fine as the metric one. For every ε > 0,
there is a n̄ large enough so that

∑
n≥n̄ diam

(
1

2n
· S1
)
≤ ε

2
. It follows that for every

point x := (xn)n∈N ∈ X the ball B(x, ε) contains the set

U := p−1
0

(
B
(
x0,

ε

2n̄

))
∩ · · · ∩ p−1

n̄−1

(
B
(
xn̄−1,

ε

2n̄

))
,

which is open in the product topology.
Since X is homeomorphic to an infinite product of S1, its fundamental group is

the infinite direct product
∏

n∈N Z (see Lemma 2.1.7). On the contrary, for every
fixed θ > 0, every θ-path in X is θ-close to a path in a finite dimensional section
1·S1×· · ·× 1

2n̄
·S1 ⊂ X and from this it is simple to deduce that π1,θ(X, x0) is an abelian

group of finite rank. In particular, the θ-discretisation ̂θ : π1(X, x0)→ π1,θ(X, x0) is
not injective.

On the other hand, we will now show that ̂ : π1(X, x0) → lim←− π1,θ(X, x0) is an
isomorphism. Let fn = p0 × · · · × pn be the projection of X onto the product
Xn := (1 · S1)× · · · × (2−n · S1). Since fn is 1-Lipschitz, it induces homomorphisms
(fn)∗ : π1,θ(X, x0) → π1,θ(Xn, fn(x0)) for every θ > 0, and by the universal prop-
erty of inverse limits these maps lift to a homomorphism (fn)∗ : lim←− π1,θ(X, x0) →
lim←− π1,θ(Xn, fn(x0)). Moreover, (fn)∗ commutes with the discretisation procedure, thus
we obtain a commutative diagram:

π1(X, x0) lim←− π1,θ(X, x0)

Zn+1 ∼= π1(Xn, fn(x0)) lim←− π1,θ(Xn, fn(x0)),

̂

(fn)∗ (fn)∗

∼̂=

where the bottom map is an isomorphism by Theorem 3.2.3. Note that the maps
(fn)∗ : lim←− π1,θ(X, x0)→ Zn+1 are coherent with the natural projections Zm → Zn for
every n ≤ m and hence they give rise to a map to the projective limit (over n):

f∗ : lim←−
θ>0

π1,θ(X, x0) −→ lim←−
n∈N
Zn ∼=

∏
n∈NZ.

With some diagram chasing, it is easy to verify that the composition π1(X, x0) −̂→
lim←− π1,θ(X, x0)

f∗−→∏
n∈N Z coincides with the natural isomorphism π1(X, x0) ∼=

∏
n∈N Z.

In particular, it follows that ̂ is injective. To show that it is also surjective it is enough
to check that f∗ is injective. This is readily done: if ([Zθ])θ>0 is a non trivial element
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Figure 3.3: Failing surjectivity: non compact example

in lim←− π1,θ(X, x0), there is a θ > 0 such that [Zθ] is not trivial in π1,θ(X, x0). For n
large enough the discrete path Zθ is θ-close to a path contained in Xn. Since fn is a
1-Lipschitz retraction, it follows that (fn)∗([Zθ]) cannot be trivial in π1,θ(Xn, fn(xn))

and therefore ([Zθ])θ>0 is mapped to a non trivial element of
∏

n∈N Z.

3.3 Some counterexamples

It this section we show that the hypotheses of Theorem 3.2.3 are (quite) sharp. More
precisely, we show that each of the hypotheses of Corollary 3.2.4 (compactness, local
path connectedness and semi-local simple connectedness) is necessary, in the sense
that if any of these three hypotheses is dropped then both injectivity and surjectivity
of the discretisation map ̂ may fail.

All the following examples are constructed as subsets of Rn for some n = 2, 3 and
they are equipped with the restriction of the Euclidean metric.

3.3.1 Counterexamples to surjectivity

Here we provide examples examples showing that ̂ needs not be surjective if some
hypotheses are dropped.

Example 3.3.1 (not compact). In R3 = C×R, for every n ∈ N let Sn be the unit circle
centred at (0, 0, n) lying on the plane orthogonal to the axis (0, 0, 1), and let Yn ⊂ Sn

be the subset of points at angle 2π k+1/2
2n

for some k ∈ N. Consider now the space
X ⊂ R3 obtained as the union of the segments joining a point in Yn with the two
closest points in Yn+1 (see Figure 3.3). The space X is l.p.c. and simply connected (it
is in fact contractible, because it is homeomorphic to a tree).

Still, lim←− π1,θ(X) is not trivial. Indeed, note that each set Yn can be seen as a
θn-path for θn = ‖1 − e 2π

2n
i‖. Moreover, for every m > n the θm-path Ym is (freely)

θn-homotopic to Yn and hence the sequence ([Yn])n∈N should represent a well-defined
conjugacy class in the inverse limit. To obtain an actual element of the group (as
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Figure 3.4: Failing surjectivity: non locally path connected example

opposed to elements defined only up to conjugacy) one has to fix a base point x0 and
a coherent sequence of closed path based at x0 that are freely θn-homotopic to the θn
paths Yn. A natural choice is to let x0 = (eπi, 0) = Y0, let βn be a continuous path
going from x0 the point (e

π
2n
i, n) ∈ Yn and consider the θn-path Zn := β̂θnYn(β̂θn)∗

(recall that the star denotes the reverse path). Then Zn ∼θn Zm for every m ≥ n and
hence the sequence ([Zn])n∈N determines an element [Z] in lim←− π1,θ(X, x0) (here we are
using the fact that the inverse limit can be computed by using any cofinal sequence in
the index set).

To show that [Z] is not trivial, it is enough to show that one of its components
is not trivial. With a similar argument of Example 3.2.6, one can show that every
θ3-path θ3-homotopic to Z3 must contain the whole of the set Y3 in its image and
hence cannot be trivial (the analogous statement is true for every Zn with n ≥ 3).
The only subtlety in applying said argument is that one cannot consider every single
jump between points in Y3, but only jumps between pairs of adjacent points of Y3 that
are connected to different points of Y2.

Example 3.3.2 (not l.p.c.). In R2, let X be the union of the graph of the function
sin(1/x) for x ∈ (0, 1] with the segment I joining (0,−1) to (0, 1) and a path joining one
end of the graph to I (see Figure 3.4). This space is compact and simply connected,
but lim←− π1,θ(X) = Z. Indeed, by ‘collapsing the singularity’ one can produce an
obvious 1-Lipschitz surjection f : X → S1 and this in turns induces a homomorphism
f∗ : lim←− π1,θ(X) −→ lim←− π1,θ(S1) ∼= π1(S1). It is easy to show that f∗ is surjective (this
is all we need to do to show that the discretisation map ̂ : π1(X) → lim←− π1,θ(X) is
not surjective). Proving that f∗ is also injective is slightly more tedious, but it can
be done by showing that θ-close θ-paths in S1 are θ-homotopic to images under f∗ of
θ-homotopic θ-paths of X.

Example 3.3.3 (not s.l.s.c.). Let X be the Hawaiian earring, i.e. the union of the
circles of radius 1/n centred at (1/n, 0) in R2 (Figure 3.5a). This space is the most
common example of a non locally simply connected space and—despite still being a
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(b) Points at distance θ in Yr

Figure 3.5: Failing surjectivity: non semi-locally simply connected example

rather mysterious object—its fundamental group has been quite thoroughly studied.
It is known that π1(X) injects in the projective limit of the fundamental group of the
largest cycles π1(X) ↪→ lim←−n

(
Z∗n
)
but its image (which can be completely described)

is not the whole group. Specifically, let Fn = Z∗n be freely generated by the set
{a1, . . . , an}, labelled so that the projection Fn+1 → Fn is the map sending an+1 to
the identity. Let wn be a reduced word in Fn and let (wn)n∈N represent an element
of lim←−n

(
Fn
)
. Then (wn)n∈N is in the image of π1(X) if and only if for every i ∈ N

the number of times that the letter ai appears in the words wn is bounded uniformly
on n (and hence eventually constant). For example, one can produce an element of
lim←−n

(
Fn
)
that is not in the image of π1(X) by considering products of commutators:

wn := [a1, a2][a1, a3] · · · [a1, an] (see [MM86, Eda92]).
We will now show that for every n ∈ N there is an appropriate value of θ

so that π1,θ(X) ∼= Fn, and that the discretisation ̂ coincides with the injection
π1(X) ↪→ lim←−n

(
Z∗n
)
mentioned above. From this it will follow that the discretisation

homomorphism is not surjective.
Let Xn ⊂ X be the subset consisting of the n largest circles. We claim that

there is a value θn such that the discretisation at scale θn induces an isomorphism
Fn ∼= π1(Xn) ̂θn−−−→ π1,θn(X)—here we are using that the discretisation of a path in
Xn is also a discretisation in X.

For r < 1, let Yr be the subset of R2 obtained by removing the open ball B
(
(1, 0), 1

)

and adding back the closed ball B
(
(r, 0), r

)
. One can show that the discretisation map

̂θ : π1(Yr)→ π1,θ(Yr) is always surjective and that it is injective if and only if there
are two points on either side of (2, 0) that are at distance at most θ from one another
and from the ball B((r, 0), r) (see Figure 3.5b). In particular, there is a threshold
value θ(r) such that π1,θ(r)(Yr) = {0} and ̂θ is an isomorphism for every θ < θ(r).
The function r 7→ θ(r) is strictly decreasing.
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Let θ′(r) := θ(r)− ε(r) where ε(r) is a positive decreasing function that takes small
enough values (it will be clear in the sequel how small they need to be). We claim
that letting θn := 1

n
θ′
(

n
n+1

)
makes ̂θn : π1(Xn) → π1,θn(X) injective. Performing an

homothety of factor n on R2, we obtain that the rescaled image of Xn is contained
in R2 r B((1, 0), 1) while the rescaled image of X is contained in Y n

n+1
. Let γ be a

non trivial continuous closed path in Xn. If the discretisation γ̂θn was θn-homotopic
to a constant path in X, after rescaling we would obtain that γ̂θn is sent to a
θ′
(

n
n+1

)
-discretisation of the rescaling of γ that is θ′

(
n
n+1

)
-homotopic to a constant

path in Y n
n+1

, a contradiction because θ′
(

n
n+1

)
< θ
(

n
n+1

)
.

For the surjectivity, note that ̂θn : π1(Xn) −→ π1,θn(Xn) is surjective (this is true
for every θ) and it is hence enough to show that the inclusion Xn ⊆ X induces
a surjection of θn-discrete fundamental groups. Note that every θ-path in X is
θ-homotopic to a concatenation of θ-paths that are contained in a single circle of X (a
‘jump’ between two circles is θ-homotopic to the concatenation of two θ-paths along
those circles joining its endpoints with the origin). Note now that any θn-path in
Xn+1 rXn is θn-homotopic to a path in Xn+2 rXn+1 because rescaling by n+ 1 we
have that

(n+ 1)θn =
n+ 1

n

[
θ
( n

n+ 1

)
− ε
( n

n+ 1

)]
> θ
(n+ 1

n+ 2

)

and the latter is precisely the quantity needed to be able to homotope a discrete path
from the rescaling of the nth circle to the rescaling of the (n+ 1)th circle. By induction,
it follows that every θn-path in in X rXn can be θn-homotoped to the constant path.

We thus proved that π1,θn(X) ∼= Fn. Moreover, it follows from the construction
that the projection Fn+1 → Fn is given by collapsing the (n+ 1)th generator. Since
θn → 0 as n goes to infinity, we deduce that lim←− π1,θ(X) ∼= lim←−n Fn.

Judging from the above example, one might hope to be able to characterise the
image of π1(X) into lim←− π1,θ(X) as the ‘sequences of words (in some generating set of
π1,θ(X)) whose projections in π1,θ(X) are eventually constant for every fixed θ’. The
next example shows that it is unlikely to find such a characterisation.

Example 3.3.4 (not s.l.s.c. bis). Let X0 ⊂ R2 be the (empty) square with corners
(1, 1), (−1, 1), (−1,−1), (1,−1) and let X1 be obtained from the square X0 by adding
the central cross (i.e. the two segments joining (−1, 0) to (1, 0) and (0,−1) to (0, 1)).
Now, let Xn+1 be obtained from Xn by adding the central crosses to all the left-most
squares of Xn and let X =

⋃
nXn be a “Hawaiian window”.

Consider now the infinite path γ : [0,∞) → X starting from the far right and
zig-zagging from the top to the bottom while moving to the left—as the graph of
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γ

Figure 3.6: Hawaiian window

sin(1/x) would do—(see Figure 3.6). For every θ, Let Zθ be the finite θ-path obtained
by following the discretisation γ̂θ until it gets at distance at most θ from the edge at
the far left, and then walking back to the origin by reaching the bottom edge and
following it to the right. Now, ([Zθ])θ>0 is a coherent family of discrete paths and it
therefore determines an element [Z] ∈ lim←− π1,θ(X). Still, such [Z] cannot be described
as the discretisation of any continuous path, because any such path would have to
follow γ in its endless travel and therefore it could not be the continuous image of a
closed interval. Note however that [Z] does seem to have ‘constant projections onto
π1,θ(X)’.

3.3.2 Counterexamples to injectivity

As in Subsection 3.3.1, we show how injectivity of ̂ may fail if one hypothesis is
dropped.

Example 3.3.5 (not compact). It is sufficient to note that R2r{0} has trivial θ-discrete
fundamental group for every θ > 0. If one also desires to have a complete metric space
it is enough to consider a manifold with cusps.

Example 3.3.6 (not l.p.c.). In R3, consider the graph of sin(π/x) as (x, y) range in
[0, 1] × [−1, 1]. Let X ⊂ R3 be the union of this graph with the limit square A
and two squares B1, B2 running sideways the graph as in Figure 3.7. The space X
is compact and it is semi-locally simply connected (for any point in A r (B1 t B2)

there is a small neighbourhood that consists of a countable union of simply connected
path-components. All the other points have a contractible neighbourhood).

Note that X has trivial θ-discrete fundamental group for every θ. Indeed, every
θ-path is trivially θ-homotopic to a θ-path consisting of points that are at distance at
least θ/2 from the limit square A. It is easy to show that every θ-path in the graph of
sin(π/x) with x ranging in [θ/2, 1] is θ-homotopic to the discretisation of a continuous
path, and from this we can deduce that π1,θ(X) is trivial because X r Nθ/2(A) is
simply connected.
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Figure 3.7: Non locally path connected example

Still, we claim that the path γ cutting through the three squares and closing up
straight through the graph of sin(π/x) is not homotopic to a constant path and hence
π1(X) 6= {0}. Indeed, if there was such an homotopy we would obtain a continuous
map F : D → X with F |∂D = γ (here D is the unit disk in R2). Since F−1(B1) and
F−1(B2) are compact, they have positive distance in D. It follows that any point
in ∂(F−1(A))r F−1(B1 tB2) has a neighbourhood disjoint from F−1(B1 ∪B2) and
we can hence find a path α lying outside F−1(B1 ∪B2) and having one endpoint in
F−1(A) and the other in its complement. This yields a contradiction, as F ◦ α would
be a path reaching the limit square A by running along (a portion of) the graph of
sin(π/x).

Example 3.3.7 (not s.l.s.c.). The basic idea is similar to that of Example 3.3.6, but it
is a little more technical. Instead of adding to the graph of sin(π/x) three squares, we
add a whole triangular prism built over the triangle with vertices (0,−1), (0, 1), (1, 1).
Moreover, we also add on the vertical plane passing through (0,−1), (1,−1) the subset
of R2 obtained by filling in the space contained between the graph of sin(π/x) and the
x-axis as x ranges in (0, 1] (see Figure 3.8). Let B denote the prisms, C the subset of
the plane before mentioned and A the segment joining (0,−1,−1) and (0,−1, 1).

The space X thus obtained is compact and l.p.c. (every point in A has a basis
of path-connected neighbourhoods, while every other point has contractible neigh-
bourhoods). As in Example 3.3.6, we can show that π1,θ(X) is trivial, it is hence
enough to show that X is not simply connected. We claim that the same path γ as in
Example 3.3.6 will show that the discretisation map is not injective.

Assume by contradiction that γ is null-homotopic. Then there is a map F : D→ X

that coincides with γ on ∂D. We begin by noting that the image of F must contain the
whole of XrB. Indeed, for every point w = (x, y, z) ∈ XrB we must have x > 0 and
we can hence fix a constant 0 < ε < x. The space Yε := X ∪

(
[0, ε]× [−1, 1]× [−1, 1]

)

is homotopy equivalent to a disk, while the space Yεr{w} is homotopy equivalent to a
holed disk (unless w belongs to the boundary of the disc, in which case it is contained

83



∪ =C

B

A

γ

Figure 3.8: Non semi-locally simply path connected example

F (x1)

F (β1)

z1

F (x2)

z2

c1

Figure 3.9: Detail of the set C with relevant paths and points

in Im(F |∂D)) and hence γ is not null-homotopic in Yεr {w}. It follows that the image
of F cannot be contained in Yε r {w} and hence w ∈ Im(F ).

Let xn ∈ ∂D be the point sent to the midpoint between
(

1
n
,−1, 0

)
and

(
1

n+1
,−1, 0

)
.

Let also cn ⊂ Cn denote the graph of sin(π/x) as x ranges in
[

1
n+1

, 1
n

]
. Note that cn

disconnects X, and let Ωn be the component of X r cn containing F (xn). Note also
that F−1(cn) is a compact that disconnects D and let Un ⊂ D be the component of
Dr F−1(cn) containing xn. We claim that F (Un) coincides with Ωn.

Let pn : X → X be a continuous map contracting Ωn to the curve cn and restricting
to the identity on X r Ωn. Let F ′ : D→ X be the map coinciding with F on Un and
defined by the composition pn ◦F on the complement DrUn. This map is continuous
as the two definitions agree on ∂Un. Since F ′ coincides with F on ∂D, it should define
a null-homotopy of γ in X and its image should hence contain the whole of Ωn. On
the other hand, we know by construction that F ′−1(Ωn) is contained in Un, and thus
the claim is proved as F (Un) = F ′(Un) = Ωn.

Let now zn ∈ X be the point on the vertical line through xn lying at distance
1/2 away from xn. Since the connected set Un is open, it is locally path connected
and hence it is also path connected. Since zn ∈ F (Un), we can hence choose a point
yn ∈ F−1(zn) ∩ Un and a path βn in Un joining xn to yn (Figure 3.9).
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Note that, by construction, any path F (βn) with n odd stays at distance at least
1/2 from all the points zm with m even (and vice versa). Since D is compact, the map
F must be uniformly continuous, and hence there exists an ε > 0 such that the path
βn with n odd stays at distance at least ε from all the points ym with m even (and
vice versa).

Since D is compact, both the sequence (y2n)n∈N and (y2n+1)n∈N will admit converg-
ing subsequences. It follows that there exist intertwined indices 2n < 2m+ 1 < 2n′ <

2m′ + 1 such that both dD
(
y2n, y2n′

)
< ε

2
and dD

(
y2m+1, y2m′+1

)
< ε

2
. We can hence

join up those pairs of points with segments of length at most ε/2. Concatenating these
small paths with the paths β2n, β

∗
2n′ and β2m+1, β

∗
2m′+1 we obtain two disjoint paths in

D linking intertwined pairs of points of ∂D, which yields the desired contradiction.
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Chapter 4

Discrete fundamental groups for
warped spaces

Recall from Subsection 2.2.4 that the warped metric δS associated with a finite set
S of homeomorphisms of a metric space (X, d) is the largest metric on X such that
δS(x, y) ≤ d(x, y) and δS(x, s · x) ≤ 1 for every x, y ∈ X and s ∈ S. We call the space
(X, δS) warped space. In this chapter we will always assume that X is path-connected.

The aim of this chapter is to compute the θ-discrete fundamental group of (geodesic)
warped spaces in terms of the fundamental group of X and the set of homeomorphisms
S. In some instances, if Γ y X is an action of a finitely generated group Γ = 〈S〉,
we will also be able to express the θ-discrete fundamental group in term of X and
(the action of) Γ, i.e. the description does not depend on the specific choice of the
generating set S.

Remark 4.0.1. Everything that follows will still make sense when S is the empty
set, and it therefore implies the analogous statements for geodesic metric spaces (as
opposed to warped metric spaces).

4.1 Jumping-fundamental group

In this section we introduce the jumping-fundamental group of a warped space as an
analogue of the fundamental group for metric spaces and we compute it in term of
π1(X) and S.

Remark 4.1.1. One could avoid introducing the jumping-fundamental group by con-
sidering the fundamental group of the space obtained by gluing together the mapping
tori

Xs :=
X × [0, 1]

(x, 1) ∼ (s(x), 0)
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along their bases X × {0} (this topological space can be used to produce yet another
model for warped spaces). We preferred not to do so because we wanted to keep clear
the distinction between topological paths and ‘paths coming from the action’.

4.1.1 Definitions and notation

We begin by giving the following:

Definition 4.1.2. A jumping-path in X is a finite sequence of continuous paths
γ0, . . . , γn : [0, 1] → X and elements ~s1, . . . , ~sn with ~si = s±1

i for some si ∈ S, such
that γi(0) = ~si · γi−1(1) for every i = 1, . . . , n. Such jumping-path will be denoted by

~γ := γ0
~s1 γ1

~s2 · · · ~sn γn.

The jumping pattern of ~γ is the ordered sequence (~s1, . . . , ~sn).

We define the length of the jumping-path ~γ as

‖~γ‖ := n+
n∑

i=0

‖γi‖,

where ‖γi‖ is the length of the path γi in (X, d). Note that if (X, d) is a geodesic
metric space, by choosing the paths γi to be geodesics we deduce from Lemma 2.2.5
that the warped distance can then be expressed as

δS(x, y) = inf
{
‖~γ‖

∣∣ ~γ jumping-path between x and y
}
.

Definition 4.1.3. A jumping-path ~γ between two points x, y ∈ X is geodesic if
it realises their distance ‖~γ‖ = δS(x, y). The warped metric space (X, δS) is jump-
ing-geodesic if (X, d) is a geodesic metric space and every two points in (X, δS) are
joined by a geodesic jumping-path.

Remark 4.1.4. It follows from the second part of Lemma 2.2.5 that if (X, d) is a proper
geodesic metric space, then the warped space (X, δS) is jumping-geodesic. Note also
that if (X, δS) is jumping-geodesic then it is a 1-geodesic metric space (defined in
Subsection 2.1.2).

For notational convenience, if one of the internal paths γi of a jumping-path is
constant, we will omit it from the notation and simply write si 

si+1 . If the constant
path is the initial (or terminal) one, we will keep its value in the notation: x0

s1 · · ·
(or · · · sn xn). We will denote the concatenation of jumping-paths simply by ~γ1~γ2.
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If a jumping-path ~γ = ~γ1
~s
 

~s−1

 ~γ2 has two consecutive jumps such that one is the
opposite of the other, we say that the jumping-path ~γ ′ = ~γ1~γ2 obtained skipping those
jumps is a contraction of ~γ. Vice versa, adding a consecutive pair of opposite jumps
is an extension.

Definition 4.1.5. Two jumping-paths with the same jumping pattern γ0
~s1 · · · ~sn γn

and γ′0
~s1 · · · ~sn γ′n are spatially-homotopic if there exist free homotopies Hi between

γi and γ′i so that for every t ∈ [0, 1] and i = 1, . . . , n

• H0(0, t) = γ0(0) = γ′0(0),

• Hn(1, t) = γn(1) = γ′n(1),

• Hi(0, t) = ~si ·Hi−1(1, t).

Two jumping-paths are homotopic if you can transform one to the other with a finite
number of space-homotopies, contractions and extensions.

The operation of concatenation between jumping-paths is compatible with homo-
topies. Given a continuous path γ, we denote by γ∗ the path obtained walking along
γ in the opposite direction. Similarly, if ~γ = γ0

~s1 · · · ~sn γn is a jumping-path, we
define ~γ∗ as

~γ∗ := γ∗n
~s−1
n · · · ~s

−1
0 γ∗0 .

Note that the concatenation ~γ~γ∗ is homotopic to the constant jumping-path; we can
therefore give the following:

Definition 4.1.6. The jumping-fundamental group is the group JSΠ1(X, x0) of ho-
motopy classes of closed jumping-paths based at a fixed point x0 ∈ X, equipped with
the operation of concatenation.

4.1.2 Constructing a homomorphism of the free group

The fundamental observation allowing us to compute jumping-fundamental groups is
the following:

Lemma 4.1.7. The jumping-paths γ ~s1 x1 and x0
~s1 ~s1(γ) are homotopic.

Proof. The functions

H0(r, t) := γ(r(1− t)) and H1(r, t) := ~s1

(
γ(1− t+ rt)

)

define a space-homotopy between them.
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Corollary 4.1.8. Every jumping-path is homotopic to a jumping-path where all the
jumps are performed last: γ ~s1 

~s2 · · · ~sn x0.

Let x0 ∈ X be a fixed base point. For every s ∈ S choose a continuous path αs
joining x0 to s · x0. Then αs

s−1

 x0 is a closed jumping-path and we can hence define a
homomorphism ψS of the free group by extension:

ψS : FS JSΠ1(X, x0)

s
[
αs

s−1

 x0

]
.

Recall that in JSΠ1(X, x0) we have
[
αs

s−1

 x0

]−1

=
[(
αs

s−1

 x0

)∗]
=
[
x0

s
 α∗s

]
.

Let αs−1 be the path s−1(α∗s). Then by Lemma 4.1.7 we have
[
x0

s
 α∗s

]
=
[
s−1(α∗s)

s
 x0

]
=
[
αs−1

s
 x0

]

and therefore ψS(s−1) =
[
αs−1

s
 x0

]
. We can hence continue to use the notation ~s to

denote an element in S± and we have ψS(~s) =
[
α~s

~s−1

 x0

]
.

Convention. Given a word w = ~s1 · · ·~sn of elements of S±, we use the shorthand w
 to

denote the concatenation ~s1 · · · ~sn . We denote by wrev the reverse word wrev := ~sn · · ·~s1,
so that wrev is short for ~sn · · · ~s1 .

If w = ~s1 · · ·~sn is a word of elements of S±, we can define the path αw in X as the
concatenation

αw :=
(
α~s1
)(
~s1(α~s2)

)
· · ·
(
~s1 ◦ · · · ◦ ~sn−1(α~sn)

)
.

Note that we have αw1w2 = αw1w1(αw2) and αw−1 = w−1(α∗w).

Lemma 4.1.7 now implies that ψS(w) is the homotopy class
[
αw

w−1
rev x0

]
.

Remark 4.1.9. Here w is denoting both a word with letters in S± and the corresponding
element in the free group FS. This ambiguity does not cause any trouble because paths
associated with equivalent words are homotopic (via contractions and extensions).

4.1.3 Computing the jumping-fundamental group

The choice of the paths αs also induces a homomorphism φS : FS → Aut
(
π1(X, x0)

)

where φS(s) is the automorphism given by

φS(s)[γ] :=
[
(αs)s(γ)(α∗s)

]
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for every [γ] ∈ π1(X, x0). Just as before, it is easy to check that for every word
w = ~s1 · · ·~sn we have

φS(w)[γ] =
[
αww(γ)α∗w

]
.

Theorem 4.1.10. The choice of paths αs induces an isomorphism of groups

ΦS : π1(X, x0)oφS FS JSΠ1(X, x0),

where the map ΦS sends ([γ], w) to
[
γαw

w−1
rev x0

]
.

Proof. The fundamental group π1(X, x0) is a natural subgroup of JSΠ1(X, x0) and we
already noted that ψS : FS → JSΠ1(X, x0) is a homomorphism. From Lemma 4.1.7 it
follows that

[
ψS(s)γψS(s−1)

]
=
[
αs

s−1

 γαs−1
s
 x0

]

=
[
αss(γ)s(αs−1)

s
 

s−1

 x0

]

= φS(s)[γ].

Since S is a generating set, we deduce that
[
ψS(w)γψS(w−1)

]
= φS(w)[γ] for every

w ∈ FS and hence ψS and the inclusion homomorphism induce a homomorphism of
groups ΦS : π1(X, x0)oφS FS → JSΠ1(X, x0). The expression for ΦS follows from the
previous discussion, as ΦS([γ], w) = ΦS([γ], e)ΦS(e, w) = [γ]ψS(w).

We can promptly show that the map ΦS is injective: by our definition of homotopy
of jumping-paths, if a jumping-path ~γ is homotopic to a constant path then its jumping
pattern must eventually reduce to the trivial word via cancellation of consecutive
opposite jumps. Therefore, if ΦS([γ], w) = e, the word w must represent the trivial
element in FS; and it is easy to see that ΦS([γ], e) = e if and only if [γ] is also trivial.

Surjectivity also follows from Lemma 4.1.7. Indeed, by Corollary 4.1.8 we know
that every jumping-path is homotopic to a jumping-path where all the jumps are
performed last ~γ = γ

~s1 
~s2 · · · ~sn x0. Then, letting w = ~s−1

1 · · ·~s−1
n we have

[
~γ
]

=
[
γα∗wαw

w−1
rev x0

]
= ΦS

(
[γα∗w], w

)
.

Remark 4.1.11. It appears to us that jumping-jundamental groups and warped spaces
might provide a sort of analogue (for semi-direct products of groups) of fundamental
groups and classifying spaces (for general groups). We did not further develop this
idea, though.
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4.2 Discretisations and jumping-fundamental group

For the rest of the chapter we will let θ be a fixed parameter greater than or equal to
1 and that (X, d) has homotopy rectifiable paths (Definition 2.1.8).

Since the parameter θ is fixed, when no confusion can arise we will lighten the
notation and simply write γ̂ instead of γ̂θ to denote the θ-discretisation of a continuous
path γ in X (see Subsection 3.2.1).

N.B. From now on the ̂ and γ̂ will simply be short for ̂θ and γ̂θ. They are not the
limit maps of Sections 3.2 and 3.3.

4.2.1 Discretisation of jumping-paths

Since we fixed θ ≥ 1, any jump x ~s
 ~s · x can be seen as a θ-path of length one in

(X, δS). We can therefore define the discretisation of a jumping-path ~γ = γ0
~s1 · · · ~sn γn

as the concatenation of the discretisations of its continuous pieces and jumps:

γ̂ := γ̂0
~s1 · · · ~sn γ̂n.

Note that here the discretisation of the continuous pieces is done using the metric d
and not the warped distance δS, as we find the geometry of the former more intuitive.

It is still true that the θ-homotopy class of a θ-discretisation only depends on the
homotopy class of the jumping-path:

Lemma 4.2.1. If two jumping-paths ~γ = γ0
~s1 · · · ~sn γn and ~γ ′ = γ′0

~s1 · · · ~sm γ′m are
homotopic then their discretisations γ̂ and γ̂ ′ are θ-homotopic.

Proof. It is clear that contractions and expansions of jumping-paths produce θ-homo-
topic jumping-paths. It is therefore enough to prove the statement when m = n and
~γ and ~γ ′ are spatially-homotopic.

Let Hi : [0, 1]2 → X be the homotopy between γi and γ′i. By compactness, there
exists an N ∈ N large enough so that the maps Ĥi : [N ]2 → X defined by

Ĥi(p, q) := Hi

( p
N
,
q

N

)

are free θ-grid homotopy between the extremal θ-paths Ĥi( · , 0) : [N ] → X and
Ĥi( · , N) : [N ]→ X, and moreover the θ-paths Ĥi( · , 0) and Ĥi( · , N) are θ-discretisa-
tions of γi and γ′i respectively (this is the same argument of Lemma 3.2.1).

Note that the θ-paths Ĥi( · , 0) are concatenated via the jumps ~si (which can
be seen as a step of a θ-path) and the same goes for the θ-paths Ĥi( · , N) and the
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θ-grid homotopies Ĥi as well. Therefore, by concatenation we obtain two θ-paths
Ĥ0( · , 0)

~s1 Ĥ1( · , 0) · · · ĤN ( · , 0) and Ĥ0( · , N)
~s1 Ĥ1( · , N) · · · ĤN ( · , N) which

are θ-homotopic θ-discretisations of ~γ and ~γ ′. Then the lemma easily follow from the
fact that different discretisations of the same continuous path are θ-homotopic.

From Lemma 4.2.1 it follows that the discretisation procedure induces a well-de-
fined discretisation map ̂ : JSΠ1(X, x0) → π1,θ

(
(X, δS), x0

)
. As it is clear that the

discretisation of a concatenation of jumping-paths is θ-homotopic to the concatenation
of their discretisations, the discretisation map ̂ is an homomorphism.

4.2.2 Kernel of the discretisation homomorphism

Let Tθ be the set of closed jumping-paths which are composition of four—non necessarily
closed—jumping-paths of length at most θ:

Tθ :=
{
~γ
∣∣ ~γ closed, ~γ = ~γ0~γ1~γ2~γ3 with ‖~γi‖ ≤ θ

}

and let FTθ ⊆ JSΠ1(X, x0) be the set of homotopy classes of the jumping-paths that
are freely homotopic to jumping-paths in Tθ:

FTθ :=
{[
~γ
] ∣∣ ~γ ∼f ~γ ′ for some ~γ ′ ∈ Tθ

}
,

where a free homotopy (denoted ∼f ) is a homotopy of closed jumping-paths where the
space-homotopies are not required to keep the endpoints fixed as long as H0(0, t) =

Hn(1, t) for every t ∈ [0, 1]. Moreover, cyclic contractions and extensions are allowed
as well (i.e. the jumping-path x0

~s
 ~γ

~s−1

 x0 id freely homotopic to ~γ).
Note that the set FTθ is invariant under conjugation in JSΠ1(X, x0).

Theorem 4.2.2. Assume that (X, d) has homotopy rectifiable paths and that the
warped space (X, δS) is jumping-geodesic. Then the discretisation homomorphism ̂ is
surjective and its kernel is generated by FTθ. Therefore we have

π1,θ

(
(X, δS), x0

) ∼= JSΠ1(X, x0)/〈FTθ〉.

Proof. Let z : [n] → (X, δS) be any θ-path. As (X, δS) is jumping-geodesic, we can
choose for every i = 1, . . . , n a geodesic jumping-path ~ζi between zi−1 and zi. We denote
the composition of these paths by zgeo := ~ζ1 · · ·~ζn (this is a sort of ‘geodesification’ of
the discrete path). Note that z ∼θ ẑgeo via the map sending the last point of ζ̂i to zi
and all the others to zi−1. This proves the surjectivity of ̂.
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x0 = z0 = z′0

z1~ζ1 z2~ζ2
· · · zn−1 ~ζn

x0 = zn = z′n

z′1~ζ′1
z′2~ζ′2 · · · z′n−1 ~ζ′n

~ε1 ~ξ2 ~ε2 ~εn−1

Figure 4.1: Geodesifications filling in a discrete homotopy.

We now have to study the kernel. Let ~γ = ~γ0~γ1~γ2~γ3 be a jumping-path in Tθ
and for each 0 ≤ i ≤ 3 let zi = ~γi(0) ∈ X be the starting point of ~γi. Let also
z4 := z0; then the sequence (z0, . . . , z4) is a closed θ-path and it is easy to see that it
is θ-homotopic to a constant path as

(z0, z1, z2, z3, z4 = z0) ∼θ (z0, z1, z1, z0, z0) ∼θ (z0, z0, z0, z0, z0)

are all θ-grid homotopies. As above, we also have γ̂i ∼θ (zi, zi+1) and therefore the
discretised path γ̂ is itself θ-homotopic to the constant path.

If a jumping-path ~γ is freely homotopic to ~γ ′ ∈ Tθ, tracing the movement of the
base point under the free homotopy we obtain a jumping-path ~β joining x0 to ~γ ′(0)

and we see that ~γ is genuinely homotopic to ~β~γ ′~β∗. We deduce that

γ̂ ∼θ β̂γ̂ ′β̂∗ ∼θ β̂β̂∗ ∼θ x0

and therefore FTθ ⊆ ker(Φ̂S).
For the inverse inclusion, we begin by showing that if two θ-paths are θ-homotopic

via a 1-step θ-grid homotopy, then their ‘geodesifications’ differ by a product of paths
in FTθ. Specifically, let z, z′ : [n]→ (X, δS) be closed θ-paths with base point x0 and so
that δS(zi, z

′
i) ≤ θ for every i ∈ [n]. As above, let zgeo := ~ζ1 · · ·~ζn and z′geo := ~ζ ′1 · · ·~ζ ′n

be concatenations of geodesic jumping-paths. Choose geodesic jumping-paths ~εi
joining zi to z′i and let ~ξi := ~ζ∗i ~εi−1

~ζ ′i~ε
∗
i ; then the jumping-path z′geo is homotopic to

the composition ~ζ1
~ξ1 · · ·~ζn~ξn (see Figure 4.1).

Let now ~βi be a jumping-path joining x0 to zi; then in JSΠ1(X, x0) we have

[zgeo] =
[
~ζ1 · · ·~ζn

]
=
[
~ζ1
~β∗1

][
~β1
~ζ2
~β∗2

]
· · ·
[
~βn−1

~ζn

]

and
[z′geo] =

[
~ζ ′1 · · ·~ζ ′n

]
=
[
~ζ1
~β∗1

][
~β1
~ξ1
~β∗1

][
~β1
~ζ2
~β∗2

]
· · ·
[
~βn−1

~ζn

][
~ξn

]
.

Note that ~ξi ∈ Tθ, and therefore ~βi~ξi~β∗i ∈ FTθ. As FTθ is invariant under conjugation,
it follows that [zgeo] ≡ [z′geo] (mod FTθ).
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γ̂(j − 1) γ̂(j)

βj
j−1

Figure 4.2: Subdividing a piece of a continuous paths.

Let ~γ be any closed jumping-path and γ̂ : [n]→ X its discretisation; we claim that[
~γ
]
≡
[
γ̂geo

]
(mod FTθ)—note that we do not claim that ~γ and γ̂ be homotopic. By

hypothesis we can assume that ~γ is composed of rectifiable paths. Let βjj−1 be the
sub-path of ~γ going from γ̂(j − 1) to γ̂(j)—it could either be a continuous path or
a single jump. We will now argue as above to conclude that βjj−1 and the geodesic
between γ̂(j − 1) and γ̂(j) differ by a product of loops in Tθ. This is clearly doable
if βjj−1 is a single jump; while if βjj−1 is a continuous path it is can be subdivided in
finitely many pieces of length at most θ (because it is rectifiable) and the argument
can be applied when seeing βjj−1 as the concatenation of these smaller pieces (see
Figure 4.2).

Assume now that ~γ and ~γ ′ are jumping-paths with θ-homotopic discretisations;
then there exists a θ-grid homotopy Ĥ : [n]× [m]→ X between lazified versions of γ̂
and γ̂ ′. Let γ̂(k) := Ĥ( · , k), note that γ̂geo = γ̂

(0)
geo and γ̂ ′geo = γ̂

(m)
geo as lazifying does

not modify the actual paths. By the above discussion, for every k = 1, . . . ,m we have[
γ̂

(k−1)
geo

]
≡
[
γ̂

(k)
geo

]
(mod FTθ) and, as we know that

[
~γ
]
≡
[
γ̂geo

]
and

[
~γ ′
]
≡
[
γ̂ ′geo

]

(mod FTθ), this concludes the proof of the theorem.

Remark 4.2.3. This is a sort of continuous version of [BKLW01, Theorem 2.7]. It
is also clear from the proof that some version of this theorem can be proved with
weaker hypotheses (e.g. spaces with path metrics). We decided not to do so to avoid
unnecessary complications.

4.3 Explicit computations

Recall that we are assuming that (X, d) to has homotopy rectifiable paths, (X, δS)

is jumping-geodesic and θ ≥ 1. Combining Theorem 4.2.2 with Theorem 4.1.10 we
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obtain a (non-canonical, as it depends on the choice of paths αs) surjection

Φ̂S : π1(X, x0)oφS FS π1,θ

(
(X, δS), x0

)
.

We now wish to study the kernel of Φ̂S more explicitly.

4.3.1 General remarks

Let Shpath :=
{

[γ] ∈ π1(X, x0)
∣∣ γ ∼f γ′, ‖γ′‖ ≤ 4θ

}
be the set of continuous loops

based at x0 that are freely homotopic to a continuous loops of length at most 4θ

in (X, d). It is then clear that Shpath × {e} is in the kernel of Φ̂S. Moreover, as it
is a subset of the normal factor of the semidirect product, taking the quotient by
⟪Shpath × {e}⟫ preserves the structure of semidirect product. Therefore Φ̂S factors as

π1(X, x0)oφS FS π1,θ

(
(X, δS), x0

)

π1(X, x0)/⟪Shpath⟫oφS FS

Φ̂S

where the normal closure ⟪Shpath⟫ is taken in the whole semidirect product and
therefore we have

⟪Shpath⟫ =
〈
{φS(w)[γ] | w ∈ FS, [γ] ∈ Shpath}

〉
.

Equivalently, ⟪Shpath⟫ is the subgroup generated by the set of continuous paths which
are freely homotopic to the image under some w ∈ FS of a short closed path.

Let Shjump :=
{
w ∈ FS

∣∣ ∃y ∈ X, d(y, w · y) + |w| ≤ 4θ
}
be the set of elements

w ∈ FS that move some point y ∈ (X, d) by less than 4θ minus the length of the
reduced word of w.

Lemma 4.3.1. Let (X, d) be a geodesic metric space and let θ be a natural number.
Then for every w ∈ Shjump there exists a [γ] ∈ π1(X, x0) so that ([γ], w) ∈ ker

(
Φ̂S

)
.

Proof. Let y be a point so that d(y, w · y) + |w| ≤ 4θ, β be a continuous path from
x0 to y, and let ε be a continuous geodesic path from y to w · y. Note that, as θ is

an integer, the closed jumping-path ε w
−1
rev y can be decomposed into four sub-paths of

length at most θ, and it is therefore in Tθ.
By Lemma 4.1.7 we have

[
αw

w−1
rev x0

]
=
[
αww(β)

w−1
rev β∗

]
=
[
αww(β)ε∗β∗

][
βε

w−1
rev β∗

]
,

and since
[
βε

w−1
rev β∗

]
is in FTθ we can conclude the proof by letting γ := βεw(β∗)α∗w

(see Figure 4.3).
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x0
αw

w(x0)

y ε
w(y)

β w(β)

w

w

Figure 4.3: Constructing a continuous path that trivializes a short jump w.

Remark 4.3.2. Note that in Lemma 4.3.1 it is important that θ be integer, as it
is necessary to be able to split a closed jumping-path length at most 4θ into four
jumping-paths of length at most θ.

Corollary 4.3.3. If (X, d) is geodesic, θ ∈ N and s ∈ Shjump for every s ∈ S, then
π1,θ

(
(X, δS), x0

)
is isomorphic to a quotient of π1(X, x0).

The converse of Lemma 4.3.1 is not true in general. Still, it does hold if the action
is by isometries.

Lemma 4.3.4. If the action FS y (X, d) is by isometries, then there exists a γ so
that ([γ], w) ∈ ker

(
Φ̂S

)
only if w ∈ ⟪Shjump⟫.

Proof. Let ~γ = γ1
~s1 · · · ~sn γn be a jumping-path and let w = ~s−1

n · · ·~s−1
1 . As the

action is by isometries, the jumping-path γ′ w
−1
rev x0 homotopic to ~γ as in Corollary 4.1.8

has the same length of ~γ. It follows that if ~γ is (freely homotopic to) a path in Tθ
then w is (conjugate to) an element in Shjump.

Corollary 4.3.5. If FS acts by isometries and Shjump = {e}, then

π1,θ

(
(X, δS), x0

) ∼= π1(X, x0)/⟪Shpath⟫oφS FS.

Proof. Every jumping-path in Tθ must be continuous as it cannot have any jump. It
follows that the kernel of Φ̂S is equal to ⟪Shpath⟫.

By considering the action of the trivial group, we obtain as a special case the
following:

Corollary 4.3.6. Let (X, d) be a geodesic metric space. For every θ > 01 we have

π1,θ

(
(X, d), x0

) ∼= π1(X, x0)/⟪Shpath⟫.
1We do not need θ to be integer, as there are no jumps to be considered.
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4.3.2 Recovering the group contribution

Let Γ = 〈S〉 be a finitely generated group and let Γ y (X, d) be an action. This
induces a warped metric δS on X and we can apply the theory developed in the
previous section to express π1,θ

(
(XδS), x0

)
in term of π1(X, x0) and FS. Still, the

description of π1,θ that we obtain this way is not completely satisfactory. Indeed, one
would expect the discrete fundamental group to encode information about the acting
group Γ, and this is not apparent in what was done so far.2 The next result tries to
uncover the dependence of π1,θ on Γ, but in order to do so we first need to prove the
following lemma:

Lemma 4.3.7. Let Goφ H be a semidirect product and N CH a normal subgroup.
Assume that there exists a function f : N → G such that

• φ(n)(g) = gf(n) for every n ∈ N and g ∈ G (where gf(n) := f(n)nf(n)−1 denotes
the conjugation by f(n));

• φ(h)(f(n)) = f(nh) for every h ∈ H (f is φ-equivariant).

Define Q to be the quotient

Q :=

(
Goφ H

)

⟪(f(n)−1, n
)
| n ∈ N⟫ ;

then there is a natural short exact sequence

1 −→ ⟪f(N)⟫Q −→ Q
p̄−−→ G

⟪f(N) ∪ [f(N), G]⟫ oφ̄

H

N
−→ 1

where [f(N), G] denotes the set
{
gf(n)g−1 | n ∈ N, g ∈ G

}
and ⟪f(N)⟫Q is the

normal subgroup generated by the image of f(N) in Q.

Proof. We first need to show that the semidirect product on the right hand side is
well-defined. For every g ∈ G, n ∈ N and h ∈ H we have

φ(h)
(
f(n)

)
= f

(
nh
)

and

φ(h)
(
gf(n)g−1

)
=
(
φ(h)(g)

)φ(h)(f(n))
φ(h)(g)−1 =

(
φ(h)(g)

)f(nh)
φ(h)(g)−1.

2 This is especially upsetting in Chapter 8 where we consider warped systems. Indeed, the discrete
fundamental group should depend on the coarse geometry of the warped systems, and this depends
only on Γ and not on the choice of generating set S.
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Since N is a normal subgroup of H, we deduce that ⟪f(N) ∪ [f(N), G]⟫ is preserved
by φ and we therefore obtain an H-action on the quotient G/⟪f(N) ∪ [f(N), G]⟫.
Moreover, N acts trivially on G/⟪f(N) ∪ [f(N), G]⟫ as

(
φ(n)(g)

)
g−1 is in [f(N), G]

by definition. It follows that φ naturally induces the required homomorphism

φ̄ : H/N → Aut
( G

⟪f(N) ∪ [f(N), G]⟫
)

and we obtain a natural surjection

p :
(
Goφ H

)
−→ G

⟪f(N) ∪ [f(N), G]⟫ oφ̄

H

N

sending (g, h) to (ḡ, h̄). It only remains to study the kernel of such surjection.
The elements

(
f(n)−1, n

)
trivially belongs to the kernel of p for every n ∈ N

and therefore p factors through the quotient Q. We obtain this way a surjective
homomorphism p̄ of Q onto the semidirect product. It only remains to show that the
kernel of p̄ is exactly ⟪f(N)⟫Q. Note that one containment is obvious, as

(
f(n), e

)
is

in ker(p) for every n ∈ N .
Vice versa, if (g, h) belongs to ker(p) then h = n for some n ∈ N , so that

(g, h) ≡
(
gf(n), e

)
mod ⟪(f(n)−1, n

)
| n ∈ N⟫. We can hence restrict to the study

of elements of ker(p) of the form (g′, e). Given such an element, g′ can be expressed as
a product of conjugates of f(n)±1 or

(
gf(n)g−1

)±1 with n ∈ N and g ∈ G. It is hence
enough to observe that (the equivalence class of) a conjugate f(n)a is in ⟪f(N)⟫Q by
definition and that (

gf(n)g−1
)a

=
(
f(n)

(
f(n)−1

)g)a

is in ⟪f(N)⟫Q as well.

Let now Γ be a finitely generated group acting on (X, d) and choose a presentation
Γ = 〈S | R〉 (R could be infinite). Let Rθ ⊂ FS be the subset of ⟪R⟫FS of words of
length at most 4θ. Note that Rθ does not need to be a subset of R (Rθ depends only
on the choice of S, not R). We will denote by Γθ the finitely presented group 〈S | Rθ〉.

Note that if r ∈ ⟪R⟫ is a relation of Γ, then the continuous path αr is closed and
it hence defines an element in π1(X, x0). We can now prove the following.

Proposition 4.3.8. Let Γ = 〈S | R〉 be a finitely generated group acting on (X, x0)

by homeomorphisms, fix θ ∈ N and let Gθ be the quotient

Gθ :=
π1(X, x0)

⟪{[αr]
∣∣ r ∈ ⟪Rθ⟫

}
∪
{

[αrγα∗rγ
−1]
∣∣ [γ] ∈ π1(X, x0), r ∈ ⟪Rθ⟫

}⟫ .

Then the quotient π1,θ

(
(X, δS), x0

)
/⟪Φ̂S([α∗r ], e) | r ∈ Rθ⟫ is isomorphic to a quotient

of Gθ o Γθ.

99



Proof. This will be an application of Lemma 4.3.7, where π1(X, x0) and FS play the
role of G and H respectively, and N corresponds to ⟪Rθ⟫. Note that the function
sending r ∈ ⟪Rθ⟫ to [αr] ∈ π1(X, x0) satisfies

φS(r)[γ] = [αrr(γ)α∗r ] = [αr][γ][αr]
−1 = [γ][αr]

and it is also φS-equivariant, as we have

φS(w)[αr] =
[
αww(αr)α

∗
w

]

=
[
αww

(
αrw

−1(α∗w)
)]

=
[
αww

(
αrr(αw−1)

)]
=
[
αwrw−1

]

(here we used essentially that r acts as the identity on X). We can hence apply
Lemma 4.3.7 to obtain a short exact sequence

1→ ⟪[αr] | r ∈ Rθ⟫Q →
π1(X, x0)oφS FS

⟪{([α∗r ], r)
∣∣ r ∈ Rθ

}⟫
p̄−→
(
Gθ oφ̄ Γθ

)
→ 1.

Note that in the expression above we used the fact that [αr]
−1 = [α∗r ], αr1r2 = αr1αr2

and that αwrw−1 = αww(αr)α
∗
w = φS(w)(αr) to deduce that

⟪[αr] | r ∈ ⟪Rθ⟫⟫Q = ⟪[αr] | r ∈ Rθ⟫Q
and

⟪{([αr]
−1, r)

∣∣ r ∈ ⟪Rθ⟫
}⟫ = ⟪{([α∗r ], r)

∣∣ r ∈ Rθ

}⟫.
However, in general it is not possible to restrict to r ∈ Rθ in the definition of Gθ, as
αwrw−1 is conjugate to αr only in π1(X, x0)o FS, and not in π1(X, x0).

The homomorphism Φ̂S is a surjection of π1(X, x0) o FS onto π1,θ

(
(X, δS), x0

)
.

Given r ∈ Rθ, we have

Φ̂S

(
([α∗r ], r)

)
=
[
α∗rαr

r−1
rev x0

]
=
[
x0

r−1
rev x0

]

and the latter is trivial as it is a closed θ-path of length at most 4θ. This implies that
Φ̂S factors through the quotient by ⟪{([α∗r ], r)

∣∣ r ∈ Rθ

}⟫.
To conclude the proof it is enough to note that Φ̂S also factors through a surjection

(
Gθ oφ̄ Γθ

)
→ π1,θ

(
(X, δS), x0

)

⟪Φ̂S([α∗r ], e) | r ∈ Rθ⟫
.

Corollary 4.3.9. If the paths αr are null-homotopic in X for every r ∈ R, then
π1,θ

(
(X, δS), x0

)
is isomorphic to a quotient of π1(X, x0)o Γθ.
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4.3.3 The special case of box spaces

As already noted in Corollary 4.3.6, Theorem 4.2.2 can be applied also to metric
geodesic metric spaces without an action (so that jumping-paths are merely continuous
paths). In particular, it will prove convenient for computing the discrete fundamental
group of a box space.

The next result is basically a rewriting of [DK17a, Lemma 3.4]. We include a
sketch of a proof for the convenience of the reader, as the statement we give here is
slightly more precise and general than what is proved by Delabie–Khukhro.

Let now Λ = 〈T 〉 be finitely generated group, let Rθ ⊂ FT be the of words of
length at most 4θ that are trivial under the surjection FT → Λ and let Λθ be the
finitely presented group Λθ := 〈T | Rθ〉. Note that Λ is naturally a quotient of Λθ.

Theorem 4.3.10 (Delabie–Khukhro). Given θ ∈ N and a subgroup H < Λ such that
the word length |g| is at least 4θ for every g ∈ H r {e}, the θ-discrete fundamental
group of the (left) Schreier graph Schr(H\Λ, T ) is given by

π1,θ

(
Schr(H\Λ, T )

) ∼= Hθ

〈
{
h ∈ Hθ | ∃g ∈ Λθ s.t. |ghg−1| ≤ 4θ

}
〉

where Hθ is the preimage of H in Λθ. In particular, if H is normal in G and |h| > 4θ

for every h ∈ H r {e} then then π1,θ

(
Schr(H\Λ, T )

) ∼= Hθ.

Sketch of proof. The Schreier graph Schr(H\Λ, T ) is isometric to the Schreier graph
Schr(Hθ\Λθ, T ). This can be made into a geodesic metric space by gluing in an interval
[0, 1] for every edge of the graph.3 The set of homotopy classes of closed paths in
Schr(Hθ\Λθ, T ) and based at Hθ ∈ Hθ\Λθ is in bijective correspondence with the set
of (reduced) words in FT that represent elements in p−1(Hθ) ⊆ FT (here p denotes
the surjection FT → Λθ).

We can apply Theorem 4.2.2 to the space Schr(Hθ\Λθ, T ) to deduce that

π1,θ

(
Schr(Hθ\Λθ, T )

) ∼=
π1

(
Schr(Hθ\Λθ, T )

)

〈FTθ〉
∼= p−1(Hθ)

〈FTθ〉
.

By definition, Rθ is contained in FTθ. Since p−1(Hθ)/⟪Rθ⟫ = Hθ ⊆ Λθ, we have

π1,θ

(
Schr(Hθ\Λθ, T )

) ∼= Hθ

〈FTθ ∩Hθ〉
.

3The θ-fundamental group of the graph seen as a discrete set of vertices coincides with the
θ-fundamental group of the geodesic metric space obtained gluing in the intervals because we are
assuming that θ is integer. Otherwise there could be θ-paths that are non-trivial in the ‘discrete
graph’ while they are trivial in the ‘geodesic graph’ (the issue is always that we need to be able to
reduce to discrete paths of length four, which might not be possible in the discrete setting if θ /∈ N).
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To conclude, it is now enough to note that free homotopies (among reduced words)
correspond to conjugations and hence FTθ corresponds to the set of elements that
can be conjugated to words of length at most 4θ.

Corollary 4.3.11. If Λ is finitely presented and (Hk)k∈N is a residual nested nor-
mal filtration of Λ, for every θ � 0 there exists an n ∈ N large enough so that
π1,θ

(
Schr(Λ/Hk, T )

) ∼= Hk for every k ≥ n.

Proof. Let Λ = 〈T | R〉 be a finite presentation. Then there exists θ � 0 such that
⟪Rθ⟫ = ⟪R⟫. Moreover, if Hk is a residual nested normal filtration then all the
non-trivial elements of Hk will have word length at least 4θ for every k large enough.
The statement now follows from the ‘in particular’ statement of Theorem 4.3.10.
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Chapter 5

Approximating graphs

In this chapter we introduce a procedure to approximate actions on spaces with
families of graphs. We then provide criteria allowing us to establish when said graphs
satisfy linear isoperimetric inequalities, have bounded degrees or cannot be coarsely
embedded into Banach spaces.

5.1 Approximating actions with graphs

Let Γ be a finitely generated group with a fixed finite generating set S. Recall that
we denote by S±e the set S ∪ S−1 ∪ {e}.

5.1.1 Definitions of approximating graphs

The ‘right’ definition of graph approximating an action depends on the structure of
the space that is being acted on.

Let (X, ν) be a measure space. A measurable partition of (X, ν) is a countable
(possibly finite) family of disjoint measurable subsets (regions) P =

{
Ri

∣∣ i ∈ I
}
such

that

ν

(
X r

∐

i∈I

Ri

)
= 0.

Let also Γ y X be a measurable action (equivalently, an action by measurable maps.
See Subsection 2.2.2).

Definition 5.1.1. Given a measurable action ρ : Γ y X and a measurable parti-
tion P = {Ri | i ∈ I} of (X, ν), their measure approximating graph is the graph
G
(
ρ : ΓyX ;P

)
whose set of vertices is the set of regions V

(
G
(
ρ : ΓyX ;P

))
= P

and such that the pair {Ri, Rj} is an edge if and only if there exists an element s ∈ S±e
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with
ν
(
(s ·Ri) ∩Rj

)
6= 0.

We can give a similar definition for actions on topological spaces, but in this setting
we choose a slightly different set of edges to retain more local information.

Definition 5.1.2. Given a continuous action ρ : Γ y X and a partition P = {Ri |
i ∈ I} of X, their topology approximating graph is the graph G̃

(
ρ : ΓyX ;P

)
whose

set of vertices is the set of regions V
(
G̃
(
ρ : ΓyX ;P

))
= P and such that the pair

{Ri, Rj} is an edge if and only if there exists an element s ∈ S±e with

s ·Ri ∩Rj 6= ∅.

Remark 5.1.3. Note that, since we are considering closures of regions and the set S±e
contains the identity element, two adjacent regions R,R′ ∈ P always form an edge
in G̃(ρ : Γ y X;P). This is the reason why we say that the topology approximating
graphs retain local information about X.

When no confusion can arise, we will lighten the notation for the measure approxi-
mating graphs by simply writing G(Γ y X;P), G(Γ y X) or G(P) (and similarly for
the topology approximating graph). The choice of which notation to use will depend
on what the parameter of interest is.

5.1.2 Comparisons among approximating graphs

Let X be a topological space and assume that ν is a measure on its Borel σ-algebra.
Then a continuous action Γ y X is also measurable and, for every measurable
partition P , the identity map on the vertex set induces a natural inclusion of graphs
G(P) ↪→ G̃(P). One could expect that the above inclusion should be a coarse
equivalence, but the next example shows that this is not the case:

Example 5.1.4. Let S = {a, b} ⊂ SO(3,R) be a pair of rotations that generate a
non-abelian free subgroup of SO(3,R), then they induce an essentially free action of
the free group F2 y S2. Let x ∈ S2 be an element with trivial stabiliser. For every
n ∈ N there is a ε > 0 such that all the balls B(w · x, ε) with |w| ≤ n have disjoint
closures. Complete this set to a partition Pn of S2.

In the measure approximating graph, the ball of radius n around the vertex
corresponding to B(x, ε) is in bijective correspondence with the ball of radius n in the
free group F2. In particular, if R ∈ P is a region such that R ∩B(x, ε) 6= ∅, we have
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that the distance between the corresponding vertices in G(Pn) is at least n+ 1, while
they are adjacent in G̃(Pn).

This implies that the inclusions G(Pn) ↪→ G̃(Pn) are not uniform quasi-isometries.

Remark 5.1.5. The example above makes it clear what we mean when we say that
the topology approximating graph encodes more local information than the measure
approximating graph.

Remark 5.1.6. Using discrete fundamental groups it is possible to show that the
families of graphs

(
G(Pn)

)
n∈N and

(
G̃(Pn)

)
n∈N as in Example 5.1.4 are not coarsely

equivalent (meaning that there are no uniform quasi-isometries between them, even if
considering other maps besides the natural inclusions).

Example 5.1.4 also allows us to point at another typical feature of approximating
graphs. That is, while it is possible (but highly atypical) for a measure approximating
graph to have high girth, the girth of a topological approximating graph associated
with an action on a (locally) connected space X is almost always 3 (which is the lowest
possible girth for a graph with no multiple edges). Indeed, let R1 and R2 be adjacent
regions in a partition P of X. Let R′ ∈ P be a region intersecting s(R1 ∩R2). Then
the vertices corresponding to R1, R2 and R′ are all joined by edges in G̃(P). Note
that in this argument we are assuming that R′ is different from R1 and R2, which we
can assume in most cases.

Having said that, we wish to remark that in most cases measure approximating
and topology approximating graphs appear to be equivalent. In fact, one should be
able to prove some statement implying that for ‘generic’ partitions the two graphs
coincide up to a bounded error. Nevertheless, in the sequel we will specify when a
statement is regarding approximating graphs in the measurable or topological settings
(most of the times the results will hold for both).

In virtue of our assumption that groups come with a fixed generating set, we have
so far systematically ignored the fact that the definition of approximating graphs
depends on the choice of a generating set for the group acting. With the next easy
lemma we wish to amend for this by showing that (in most cases) the coarse geometry
of said graphs does not depend on this choice.

Lemma 5.1.7. Let S and T be two finite generating sets for the group Γ. If an
action Γ y (X, ν) is measure-class preserving then the measure approximating graphs
GS(P) and GT (P) constructed with respect to these generating sets are uniformly
quasi-isometric ( i.e. the quasi-isometry constants only depend on S and T ).
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The analogous statement holds for continuous actions on topological spaces and
topology approximating graphs.

Proof. By considering a generating set containing both, we can assume that S ⊆ T .
We then have a natural inclusion GS(P) ↪→ GT (P). Since T is finite, there exists
an n such that every element t ∈ T can be expressed as a product of at most n
elements of S. It follows that if {R,R′} is an edge of GT (P) then the vertices R and
R′ are joined by a path of length at most n in GS(P). Indeed, let t = s1 · · · sn and let
ν(t(R) ∩R′) > 0. Since the partition is countable and the action preserves measure
zero sets, there exists a region R1 ∈ P such that R1 ∩ s−1

1

(
t(R) ∩ R′

)
has positive

measure, and hence {R1, R
′} is an edge in GS(P). By construction, s2 · · · sn(R) ∩R1

has positive measure. We can hence conclude that R and R1 are joined by a path of
length n− 1 by induction.

The proof in the topological setting is analogous.

5.1.3 A minimal regularity condition

For the graph G(Γ y X;P) to give any interesting information on the dynamical
system, we need to require some tameness conditions on the action itself and on the
partition considered. The most important among such requirements is some kind of
control on the ratios of the measures of the regions of the partition P .

Definition 5.1.8. A partition P of a measure space has bounded measure ratios if
the measure of every region R ∈ P is finite and there exists a constant Q ≥ 1 such
that for every couple of regions Ri, Rj in P one has

1

Q
≤ ν(Ri)

ν(Rj)
≤ Q.

All the statements that we will prove in the sequel need the partitions to have
bounded measure ratios. For most of the statements we will also need extra hypotheses,
but these will vary from case to case.

Remark 5.1.9. As a general rule, the ideal situation to work in is that of actions by
diffeomorphisms (or even isometries) on compact connected Riemannian manifolds.
Most of the proofs that follow can be made substantially easier in this rather restricted
settings.
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5.2 Measure expansion and Cheeger constants

The major player of this section is the following notion of expansion for actions on
measure spaces.

Definition 5.2.1. A measurable action ρ : Γ y (X, ν) is expanding in measure if there
exists a constant α > 0 such that ν(S±e · A) ≥

(
1 + α

)
ν(A) for every measurable set

A ⊂ X with finite measure and ν(A) ≤ ν(X)/2 (the latter condition is vacuous when
X has infinite measure). When this is the case, we say that the action is α-expanding.

Note that the set A is always contained in S±e ·A because e ∈ S±e . Moreover, since
S is finite, an action is expanding in measure if and only if there exists a constant
α′ > 0 such that for every subset A with finite measure and ν(A) ≤ ν(X)/2 there
exists an element s ∈ S± such that ν

(
s(A)4A

)
≥ α′ν(A) (this reformulation is more

reminiscent of a definition of Kazhdan property (T)).

Remark 5.2.2. We designed this notion of expansion to be the right condition for the
subsequent results of this chapter. Still, it turned out that this notion is not quite new
in the literature. In the terminology of [GMP16], the action ρ is expanding in measure
if X is a domain of expansion for it. In [BY13] such a ρ is said to be a continuous
expander (if the action is also differentiable).

5.2.1 Expansion of the action implies expansion of the graphs

The fundamental observation at the base of our work is the following lemma:

Lemma 5.2.3. Let ρ : Γ y (X, ν) be an α-expanding action. For every partition P
with measure ratios bounded by a constant Q, the measure approximating graph G(P)

has Cheeger constant bounded away from zero

h
(
G(P)

)
≥ ε > 0

and the constant ε = ε(α,Q) depends only on the expansion parameter α and the bound
on measure ratios Q.

Proof. Let W be any finite set of vertices of G(P) with |W | ≤ |G(P)|/2 and consider
the measurable set

A :=
∐

Ri∈W

Ri.

Up to measure zero sets we have

S±e · A ⊆
⋃{

Ri

∣∣∣ ν
(
(S±e · A) ∩Ri

)
> 0
}

=
∐

W∪∂W

Ri =: B.
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If ν(A) ≤ ν(X)/2 then
ν(B) ≥ (1 + α)ν(A)

and since P has bounded measure ratios we conclude

Q
∣∣∂W

∣∣
(

inf
R∈P

ν(R)

)
≥ ν(B r A) ≥ αν(A) ≥ α

∣∣W
∣∣
(

inf
R∈P

ν(R)

)
;

whence
|∂W |
|W | ≥

α

Q
.

On the other hand, if ν(A) > ν(X)/2 let C := Xr (S±e ·A). Since S±e is symmetric,
the set (S±e · C)r C is contained in (S±e · A)r A. Then we have:

ν
(
(S±e · A)r A

)
≥ αν(C) = α

(
ν(X)− ν(A)− ν

(
(S±e · A)r A

))

whence
ν(B r A) ≥ ν

(
(S±e · A)r A

)
≥ α

1 + α

(
ν(X)− ν(A)

)
.

Since |W | ≤ |P|/2, by the bound on measure ratios we get

ν
(
X r A

)
≥ 1

Q
ν(A).

Using the same argument as above and combining the inequalities so obtained we
conclude that

|∂W |
|W | ≥ min

{
α

Q
,

α

(1 + α)Q2

}

as desired.

Corollary 5.2.4. Let (X, ν) be a probability space and Γ y (X, ν) an action expanding
in measure. Assume we are given a sequence of finite measurable partitions Pn with
|Pn| → ∞ and measure ratios uniformly bounded by the same constant Q. Then the
sequence of measure approximating graphs G(Pn) share a uniform lower bound on their
Cheeger constants. In particular, they form a family of expanders if and only if they
have uniformly bounded degree.

Remark 5.2.5. If X is also a topological space, since the measure approximating graph
is a subgraph of the topology approximating graph having the same set of vertices,
it follows that the Cheeger constant of G̃(P) is bounded from below by the Cheeger
constant of G(P). In particular, Lemma 5.2.3 and Corollary 5.2.4 hold for topology
approximating graphs as well.
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5.2.2 A converse implication

In certain situations, considering ‘finer and finer’ measurable partitions on the same
dynamical system Γ y (X, ν) can yield a converse to Lemma 5.2.3. To make sense of
the intuition behind choosing ‘finer’ partitions, it is helpful to restrict to spaces with
more structure. A natural setting for doing so is that of metric spaces equipped with
Radon measures on their Borel σ-algebras (see Subsection 2.1.6).

Lemma 5.2.6. Let X be a locally compact metric space. Then, for every compact
subset K ⊆ X there exists a radius r > 0 small enough so that the closed neighbourhood
N r(K) is still compact.

Proof. By local compactness, every point x ∈ K has a compact neighbourhood and
hence there exists a rx > 0 such that the closed ball B(x, rx) is compact. The collection
of open balls B(x, rx) is an open cover of K, thus there exist finitely many x1, . . . , xn

such that B(xi, rxi) cover K.
Let r > 0 be small enough so that the neighbourhood Nr(K) is contained in the

union
⋃n
i=1 B(xi, rxi). Then we have

N r(K) ⊆
n⋃

i=1

B(xi, rxi)

and therefore N r(K) is compact.

Proposition 5.2.7. Let (X, d, ν) be a locally compact metric space with a Radon
measure thereof and let Pn be a sequence of measurable partitions of X with uniformly
bounded measure ratios. Assume that for every compact set K ⊆ X there is a decreasing
sequence of positive numbers (rK,n)n∈N such that rK,n → 0 and ν

(
EK,n

)
→ 0, where

EK,n :=
⋃{

R
∣∣ R ∈ Pn, R ∩K 6= ∅, diam(R) > rK,n

}

and EK,n is its closure.
Then, for any continuous action Γ y X the existence of a uniform positive Cheeger

constant ε > 0 for the topology approximating graphs G̃(Pn) implies that the action is
expanding in measure.

Proof. The idea of the proof is that the isoperimetric information on the approximating
graphs translates well to subsets of X that can be described as union of regions in Pn.
To use this information we thus need to show that every subset of X can be suitably
approximated as a union of regions.
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Since ν is a Radon measure, it is enough to prove that there is a positive constant
α > 0 so that for every compact set K ⊂ X with finite measure and ν(K) ≤ ν(X)/2

we have ν(S±e ·K) ≥ (1 + α)ν(K).
Fix such a compact set K and an appropriate sequence rK,n → 0 and note that by

hypothesis we have:

ν(K) = lim
n→∞

[
ν
(
K r EK,n

)
+ ν
(
K ∩ EK,n

)]
= lim

n→∞
ν
(
K r EK,n

)
.

For any set A ⊆ X we will denote by Vn(A) ⊆ Pn the set of cells in Pn whose
closure intersects A

Vn(A) :=
{
R ∈ Pn

∣∣ R ∩ A 6= ∅
}

and denote by Nn[A] their union

Nn[A] :=
⋃

R∈Vn(A)

R ⊆ X

and by N n[A] the union of their closures1

N n[A] :=
⋃

R∈Vn(A)

R ⊆ X.

By construction, for every A ⊆ K and for every region R ∈ Pn contained in EK,n
we have that R is not in Vn(Ar EK,n). Since EK,n is a union of regions, we deduce
that Nn[ArEK,n] ⊆ Nn[A]rEK,n. Moreover, since the diameter of a region R is equal
to the diameter of its closure and A ⊆ K, if R is a region contained in Nn[A]r EK,n

then R is contained in the closed neighbourhood N rK,n(A). We thus obtain:

N n

[
K r EK,n

]
⊆ Nn[K]r EK,n ⊆ N rK,n(K)r EK,n. (5.1)

As A ⊆ Nn[A] for every A ⊆ X, we have:

ν
(
K r EK,n

)
≤ ν

(
Nn
[
K r EK,n)

])
≤ ν

(
Nn
[
K r EK,n)

])
≤ ν

(
N rK,n(K)

)
,

and since both the first and the last expression tend to ν(K) we deduce that there
exist the limits

lim
n→∞

ν
(
Nn
[
K r EK,n

])
= lim

n→∞
ν
(
Nn
[
K r EK,n

])
= ν(K). (5.2)

1Note that if Vn(A) is infinite Nn[A] does not need to be closed. This is not going to be important
though.
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Equation (5.2) allows us to express ν(K) as a limit of measures of finite unions of
regions of Pn. We now need to find a similar estimate for S±e ·K. For n large enough
the neighbourhood N rK,n

(
K
)
is compact by Lemma 5.2.6, hence for every s ∈ S±e

the restriction of s to said compact neighbourhood is a uniformly continuous map. It
follows that there is an infinitesimal decreasing sequence r′n → 0 such that

s ·N rK,n(K) ⊆ N r′n

(
N rK,n

(
s ·K

))

for every s ∈ S±e and hence

S±e ·N rK,n(K) ⊆ N r′n

(
N rK,n

(
S±e ·K

))
⊆ N r′n+rK,n

(
S±e ·K

)
. (5.3)

Again by Lemma 5.2.6, we can fix a n0 large enough so that the set

C := N r′n0
+rK,n0

(
S±e ·K

)

is compact. In particular, we obtain a new infinitesimal sequence rC,n from the
hypothesis and, as for (5.1), we have

Nn[A]r EC,n ⊆ N rC,n(A)r EC,n ⊆ N rC,n(A) (5.4)

for every A ⊆ C.
For n ≥ n0, applying (5.1), (5.3) and (5.4), we obtain a chain of containments:

Nn
[
S±e · N n

[
K r EK,n

]]
⊆ Nn

[
S±e ·

(
N rK,n(K)r EK,n

)]

⊆ Nn
[
S±e ·N rK,n(K)

]

⊆ Nn
[
N r′n+rK,n

(
S±e ·K

)]

⊆
(
Nn
[
N r′n+rK,n

(
S±e ·K

)]
r EC,n

)
∪ EC,n

⊆ N rC,n+r′n+rK,n

(
S±e ·K

)
∪ EC,n.

As the measure of the last term converges to ν
(
S±e ·K

)
, we deduce

ν
(
S±e ·K

)
≥ lim sup

n→∞
ν
(
Nn
[
S±e · N n

[
K r EK,n

]])

and together with (5.2) this yields:

ν(S±e ·K)

ν(K)
≥ lim sup

n→∞

ν
(
Nn
[
S±e · N n

[
K r EK,n

]])

ν
(
Nn
[
K r EK,n

]) . (5.5)
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By hypothesis, the partitions Pn have uniformly bounded measure ratios. That
is, there exists a constant Q such that for any n and any R,R′ ∈ Pn we have
ν(R) ≤ Qν(R′). It follows that for every pair of sets A,B ⊆ X we have an estimate

ν
(
Nn[A]

)

ν
(
Nn[B]

) ≥ |Vn(A)|
|Vn(B)|Q

−1.

Now, the key point of the proof is that for any set A ⊆ X we have

Vn

(
S±e · N n[A]

)
= Vn(A) t ∂ Vn(A).

Thus we get

ν
(
Nn
[
S±e · N n[A]

])

ν
(
Nn[A]

) = 1 +
ν
(
Nn[S±e · N n[A]]rNn[A]

)

ν
(
Nn[A]

) ≥ 1 +

∣∣∂ Vn(A)
∣∣

|Vn(A)| Q
−1

and if we apply this inequality to the sets An := K r EK,n, inequality (5.5) becomes

ν(S±e ·K)

ν(K)
≥ 1 + lim sup

n→∞

∣∣∂ Vn(An
)∣∣

|Vn(An)| Q
−1.

It is hence enough to find a uniform bound α > 0 such that

lim sup
n→∞

∣∣∂ Vn(An)
∣∣

|Vn(An)| ≥ α.

If |Vn(An)| is less than or equal to |Vn(X)|/2 then
∣∣∂ Vn(An)

∣∣
|Vn(An)| ≥ ε

by definition of Cheeger constant. If this is not the case, we need to use an argument
similar to that of Lemma 5.2.3. That is, denote by Wn the complement set Wn :=

Vn(X)r Vn(An) and notice that

∂ Vn(An) = ∂int(Wn) ⊇ ∂
(
Wn r ∂int(Wn)

)
,

where ∂int(Wn) denotes the interior vertex boundary, i.e the set of vertices of Wn

which are endpoints of edges with one endpoint in the complement Vn(X)rWn. It
follows that

|∂ Vn(An)| ≥ ε
∣∣Wn r ∂int(Wn)

∣∣ = ε
(
|Wn| − |∂ Vn(An)|

)
.
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Since limn→∞ ν
(
Nn(An)

)
= ν(K) ≤ 1

2
ν(X), we can once more use the bound on

measure ratios to get that |Vn(An)| ≤ Q|Wn| for n large enough. Thus we have

lim sup
n→∞

|∂ Vn(An)|
|Vn(An)| ≥ lim sup

n→∞

1

|Vn(An)| min

{
ε|Vn(An)| , ε

1 + ε
|Wn|

}

≥ lim sup
n→∞

min

{
ε ,

ε

Q(1 + ε)

}

as desired.

Remark 5.2.8. Proposition 5.2.7 implies a fortiori that a uniform lower bound on the
Cheeger constant on measure approximating graphs forces the action to be expanding
in measure.

Definition 5.2.9. Given a partition P of a metric space, we define its mesh as the
supremum of the diameters of its regions:

mesh(P) := sup{diam(R) | R ∈ P}.

Note that if Pn is a sequence of partitions with mesh(Pn) → 0, then all the
sets EK,n as in Proposition 5.2.7 can be assumed to be empty simply by letting
rK,n := mesh(Pn) for every compact set K ⊆ X. In particular, Proposition 5.2.7
immediately implies the following:

Corollary 5.2.10. Given a continuous action Γ y X on a locally compact metric
space equipped with a Radon measure and a sequence of measurable partitions Pn with
uniformly bounded measure ratios and mesh(Pn)→ 0; if the topology approximating
graphs G̃(Pn) have Cheeger constant uniformly bounded away from 0 then the action
is expanding in measure.

Remark 5.2.11. It is easier to prove Corollary 5.2.10 directly rather than proving
Proposition 5.2.7, but we decided to provide a more general statement that could be
applied e.g. to metric spaces with cusps as well.

5.2.3 An ‘if and only if’ conclusion

We can combine Proposition 5.2.7 with Lemma 5.2.3 to deduce an if and only if
characterisation of expansion in measure in terms of lower bounds of Cheeger constants.

Theorem 5.2.12. Let Γ y (X, d, ν) be a continuous action on a metric space with a
Radon measure and let Pn a family of finite measurable partitions of X with uniformly
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bounded measure ratios and such that for every compact set K ⊆ X there is a decreasing
sequence rK,n → 0 such that rK,n → 0 and ν

(
EK,n

)
→ 0, where

EK,n :=
⋃{

R
∣∣ R ∈ Pn, R ∩K 6= ∅, diam(R) > rK,n

}

and EK,n is its closure. Then, the following are equivalent:

(i) the action is expanding in measure;

(ii) all the measure approximating graphs G(Pn) share a common lower bound on
their Cheeger constant;

(iii) all the topology approximating graphs G̃(Pn) share a common lower bound on
their Cheeger constant.

Moreover, if α > 0 is the constant of expansion in measure, Q is the bound on
the measure ratios, ε = infn∈N h

(
G(Pn)

)
and ε̃ = infn∈N h

(
G̃(Pn)

)
, then we have the

following estimates:

ε̃ ≥ ε

ε ≥ min

{
α

Q
,

α

(1 + α)Q2

}

α ≥ min

{
ε̃

Q
,

ε̃

(1 + ε̃)Q2

}
.

Remark 5.2.13. We wish to remark that if it is already known that the approximating
graphs share a uniform bound on their degrees, then one can modify the proofs of
Lemma 5.2.3 and Proposition 5.2.7 in order to extend them to measurable actions
of semigroups and groupoids. Indeed, the key point where we used the existence of
inverses is when we find a lower bound on the size of the boundary of a set consisting
of more than a half of the total number of vertices. There, we look at the complement
and use the inverses in order to relate the sizes of the (external) boundaries of a set
and its complement. This sort of bound can be proved more easily if one already
knows that the degrees are bounded.

5.3 Bounds on degrees

In this section we prove that some fairly mild condition on the geometry of a metric
space X, the partition P and the action Γ y X are enough to imply that the topology
(and hence measure) approximating graph G̃(Γ y X;P) has bounded degree. In
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particular, this will allow us to use the results of Section 5.2 to build families of
expanders.

Recall that the doubling constant of a doubling metric measure space (X, d, ν) is
the smallset D such that ν

(
Bx(2r)

)
≤ Dν

(
Bx(r)

)
for every x ∈ X and r > 0. Recall

also that the eccentricity ξ(A) of a bounded set A ⊂ X is the infimum of the ratios
R
r
such that Bx(r) ⊆ A ⊆ Bx(R) for some x ∈ A; and that a homeomorphism is

η-quasi-symmetric if
d
(
f(x), f(y)

)

d
(
f(x), f(z)

) ≤ η

(
d(x, y)

d(x, z)

)

for every choice of points z 6= x 6= y in X (Subsection 2.1.4).

Definition 5.3.1. A measurable map f : (X, ν) → (X, ν) has measure distortion
bounded by Θ ≥ 1 if

1

Θ
ν(A) ≤ ν

(
f(A)

)
≤ Θν(A)

for every measurable set A ⊆ X.
An action ρ : G y (X, d) has bounded measure distortion if ρ(g) has bounded

measure distortion for every g ∈ G. We do not require the bounds to be uniform.

We can now prove the following:

Proposition 5.3.2. Let (X, d, ν) be a doubling measure space and P be a measurable
partition with measure ratios bounded by Q ≥ 1 and such that all the regions R ∈ P
are bounded and have uniformly bounded eccentricity ξ(R) ≤ ξ for some constant
ξ > 0.

Given an action ρ : Γ y (X, d, ν) by quasi-symmetric maps with bounded measure
distortion, let η : [0,∞) → [0,∞) and Θ ≥ 1 be such that the homeomorphism ρ(s)

is η-quasi-symmetric and has measure distortion bounded by Θ for every generator
s ∈ S±e .

Then the topology approximating graph G̃(ΓyX;P) has bounded degree and this
bound depends only on η,Θ, Q, ξ and the doubling constant D.

Proof. Fix any s ∈ S±e and, for any region R ∈ P , let

J :=
{
Ri ∈ P

∣∣ Ri ∩ s(R) 6= ∅
}
.

It is enough to prove that there is a uniform bound on |J |.
Since s is η-quasi-symmetric and ξ(R) = ξ(R), the image s(R) has eccentricity at

most η(ξ). Thus, for every δ > 0 there are x ∈ X and 0 < r1 ≤ r2 with r2 ≤ (η(ξ)+δ)r1

such that
Bx(r1) ⊆ s(R) ⊆ s(R) ⊆ Bx(r2).
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Since δ is arbitrarily small we will ignore it in the sequel.
We can then bound the measure ν

(
Bx(r2)

)
due to the doubling condition on X:

ν
(
Bx(r2)

)
≤ Ddlog2(r2/r1)eν

(
Bx(r1)

)
≤ Ddlog2(η(ξ))eν

(
s(R)

)

where dte denotes the smallest integer k ≥ t. Letting L1 = Ddlog2(η(ξ))e we get

ν
(
Bx(r2)

)
≤ L1Θν(R)

by bounded measure distortion.
Choose a finite subset J ′ ⊆ J (a priori, J could still be infinite at this point).

For an arbitrary δ > 0, choose r ≥ 0 such that Ri ⊆ Bx(r2 + r + δ) for every region
Ri ∈ J ′. Again, since δ is small we will ignore it in the sequel. By definition, there
exists a region Rj (here j ∈ J ′) with closure intersecting s(R) non trivially and having
diameter diam(Rj) ≥ r. Thus, there exists y ∈ X with By(r/2ξ) ⊆ Rj.

Notice that

ν

(∐

i∈J ′
Ri

)
≤ ν

(
By(2(r + r2))

)
≤ D

⌈
log2

(
2(r+r2)2ξ

r

)⌉
ν
(
By(r/2ξ)

)
.

Letting L2(t) := Ddlog2(4ξ(1+t))e yields

|J ′|
Q
ν(Rj) ≤ ν

(
By(2r + r2)

)
≤ L2(r2/r)ν

(
By(r/2ξ)

)
≤ L2(r2/r)ν(Rj), (5.6)

where the RHS is set as +∞ if r = 0. As the RHS is a decreasing function of r, and
r increases as J ′ ⊂ J does, we deduce that there exists a number r3 ≥ 0 such that
Ri ⊆ Bx(r2 + r3) for every region Ri ∈ J . Inequality (5.6) then implies

|J |
Q
≤ L2

(r2

r3

)
.

On the other hand we have

ν

(∐

i∈J

Ri

)
≤ ν

(
Bx(r3 + r2)

)
≤ D

⌈
log2

(
(r3+r2)
r2

)⌉
ν
(
Bx(r2)

)
,

thus letting L3(t) = Ddlog2(t+1)e we get

|J |
Q
ν(R) ≤ L3(r3/r2)ν

(
Bx(r2)

)
≤ L3(r3/r2)L1Θν(R).

Thus we conclude

|J | ≤ min
{
QL2

(
r2/r3

)
, QΘL3

(
r3/r2

)
L1

}

≤ sup
t>0

(
min

{
QL2

(
t
)
, QΘL3

(1

t

)
L1

})

and the latter is bounded.
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Corollary 5.3.3. If an action Γ y X and a sequence of partitions Pn satisfy the
hypotheses of Theorem 5.2.12 and Proposition 5.3.2, then the measure (or topology)
approximating graphs G(ΓyX;Pn) form a family of expanders if and only if the action
is expanding in measure.

Proposition 5.3.2 is fairly general in that it deals with a large class of maps and
measure spaces. Still, at times its hypotheses might be cumbersome to work with. It is
especially so when one already knows that the action and the partition already satisfy
much stronger hypotheses that make some of the requirements of Proposition 5.3.2
redundant. For example, it is easy to prove the following:

Remark 5.3.4. Let (X, d) be a metric space with a partition P so that there exists a
function ζ : [0,∞)→ N such that for every point x ∈ X and every radius r the ball
Bx(r) intersects at most ζ(r) regions of P .

Then, if f : X → X is a L-Lipschitz map and Y ⊂ X is any subset, then f(Y )

intersect at most ζ
(
L diam(Y )/2

)
regions of P . In particular, in this case a (uniform)

bound on the diameter of the regions in P yields a (uniform) bound on their degree
as vertices of the approximating graph.

5.4 Obstructions to coarse embeddings

In this section we study the (non) existence of uniform coarse embeddings of approxi-
mating graphs into Banach spaces.2 In the context of measure preserving actions with
spectral gap (Subsections 2.4.4 and 2.4.5), it will be easy to prove that such coarse
embeddings cannot exist. In the sequel this will allow us to produce explicit families
of superexpanders. Similar results have been independently obtained in [NS17] and
[Saw17a].

N.B. The results of this section hold only for measure preserving actions on probability
spaces.

Let Γ y (X, ν) be a measure preserving action on a probability space, P a finite
measurable partition of X and E a Banach space. Staying true to our conventions,
a function f̂ from the (measure) approximating graph G(ΓyX;P) to the Banach
space E is actually a function defined on the vertex set—namely P . In particular, f̂
naturally induces a function f : X → E assigning to a point x ∈ X the value of the
region Rx ∈ P containing it (this is defined almost everywhere).

2 This study is motivated from the fact that families of expanders cannot be coarsely embedded
into any Lp-space (Theorem 2.7.9).
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Note that the function f thus defined is a simple function on a probability space
and hence belongs to the Bochner space L2(X, ν;E) (Subsection 2.4.5) i.e. the norm
‖f‖B =

∫
X
‖f‖Edν is finite. Recall also that the measure-preserving action γ y X

induces a unitary action on L2(X, ν;E) by pre-composition.
The proof of the next two lemmas are adapted to measure approximating graphs,

but the same arguments work for topology approximating graphs as well.

Lemma 5.4.1. If f̂ is a coarse embedding with control functions ρ− and ρ+, then for
every s ∈ S we have ‖f − s · f‖B ≤ ρ+(1).

Proof. Note that for almost every x ∈ X if we let Rx, Rs·x ∈ P be the regions
containing x and s · x, respectively, then d(Rx, Rs·x) ≤ 1. Therefore, we have

∥∥f − s−1 · f
∥∥2

B
=

∫

X

‖f(x)− f(s · x)‖2
E dν(x)

=

∫

X

∥∥∥f̂ (Rx)− f̂ (Rs·x))
∥∥∥

2

E
dν(x)

≤
∫

X

(ρ+(1))2 dν = (ρ+(1))2 .

Lemma 5.4.2. If P has Q-bounded measure ratios, the degree of G(ΓyX;P) is
D, and f̂ is a coarse embedding with control functions ρ− and ρ+, then (when the
right-hand side is defined) we have

‖f‖B ≥
1

4
ρ−

(
1

log(D)
log

( |P|
2Q

)
− 1

)
.

Proof. Let C = ‖f‖B. Note that the set X2C = {x ∈ X | ‖f(x)‖E ≤ 2C} has measure
ν(X2C) > 1

2
.

For any r ≥ 0 and R ∈ P, let Nr(R) ⊆ X denote the union of all the regions
R′ ∈ P with d(R,R′) ≤ r. Then it follows from our hypotheses that

ν (Nr(R)) =
ν (Nr(R))

ν(X)
≤ Q

Dr+1

|P| .

In particular, if we let

r =
1

log(D)
log

( |P|
2Q

)
− 1,

then ν(Nr(R)) ≤ 1
2
.

Choose any region R ⊆ X2C . By construction, there must exist another region
R′ ⊆ X2C with d(R,R′) > r. Therefore, we have

ρ−(r) ≤ ρ− (d(R,R′)) ≤
∥∥∥f̂(R)− f̂(R′)

∥∥∥
E
≤
∥∥∥f̂(R)

∥∥∥
E

+
∥∥∥f̂(R′)

∥∥∥
E
≤ 4C,

whence the required inequality.
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Now, let ρn : Γn y (Xn, νn) be a sequence of probability measure preserving actions,
let Pn be measurable partitions of Xn, all with Q-bounded measure ratios and such
that all the measure (or topology) approximating graphs G(ΓnyXn;Pn) have degree
at most D. Combining Lemma 5.4.1 and Lemma 5.4.2 yields the following result.

Proposition 5.4.3. If the actions ρn : Γn y (Xn, νn) of above all have E-spectral gap
with a uniform constant ε > 0 and |Pn| → ∞, then neither the measure approximating
graphs G(ΓnyXn;Pn) nor the topology approximating graphs G̃(ΓnyXn;Pn) can be
uniformly coarsely embedded into E.

Proof. Let f̂n : Pn → E be any sequence of functions and fn : Xn → E the measurable
functions associated with them.

Note that, subtracting from f̂n (and fn) the average value
∫
X
fndν ∈ E if necessary,

we can assume that fn has average 0 (i.e. belongs to L2
0(X, ν;E)) for every n ∈ N.

The uniform E-valued spectral gap condition now implies that there is a δ > 0

such that ∑

s∈S±

∥∥fn − s−1 · fn
∥∥2

B
≥ δ‖fn‖B

for every n ∈ N; from which we can conclude that the fn’s cannot be uniform coarse
embeddings. Indeed, if they were coarse embeddings we would have ‖fn‖B →∞ by
Lemma 5.4.2, while Lemma 5.4.1 would imply that the left hand side is bounded by
|S±|ρ+(1).

Remark 5.4.4. Since Cayley graphs can be realized as approximating graphs (see the
discussion at the end of Subsection 6.1.2), we can use Proposition 5.4.3 to reprove
the fact that Lafforgue expanders do not coarsely embed into any Banach space with
non-trivial type (Subsection 2.8.3).

Indeed, if Λ is a group with Lafforgue’s strong Banach property (T) (Subsec-
tion 2.5.7) then its actions on cosets sets Λ/Λi are all ergodic and hence have uniform
E-valued spectral gap for every Banach space E of non-trivial type.
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Chapter 6

Constructing expanding actions

In this chapter we exhibit concrete examples of expanding actions.

6.1 A spectral criterion for expansion

In the following, Γ y (X, ν) will be a probability measure preserving action of a
finitely generated group.

6.1.1 Expansion vs. almost invariant vectors

Let 1 ≤ p <∞ and recall that Lp0 is the space of zero average Lp-integrable complex
functions. In this subsection we prove that a measure preserving action is expanding
in measure if and only if it has a spectral gap. This will be very useful, because the
notion of spectral gap has been thoroughly studied and we will hence be able to use a
number of sophisticated results as black boxed in order to produce expanders. We
begin with a simple lemma:

Lemma 6.1.1. For every function f ∈ Lp0(X) and every constant c ∈ C we have

∥∥f + c
∥∥
p
≥
‖f‖p

2
.

Proof. Let g be any function in Lp(X). Applying Jensen inequality we have
∣∣∣∣
∫

X

g(x)dν(x)

∣∣∣∣
p

≤
(∫

X

|g(x)|dν(x)

)p
≤
∫

X

|g(x)|pdν(x).

Denote by ν(g) the average
∫
X
g(x)dν(x). Then we have:

∥∥g − ν(g)
∥∥
p
≤
∥∥g
∥∥
p

+ ‖ν(g)‖p ≤ 2
∥∥g
∥∥
p
. (6.1)

Now, for any constant c and any f ∈ L2
0, the average ν(f + c) is equal to c. Thus

inequality (6.1) reads as ‖f‖p ≤ 2‖f + c‖p.
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Recall from Subsection 2.4.4 that a probability measure preserving action ρ : Γ y X

induces a unitary representation πρ : Γ y Lp0(X) be precomposition, and that ρ has a
spectral gap in Lp0 if there exists a δ > 0 such that

∑

s∈S±
‖s · f − f‖ ≥ δ‖f‖

for every f ∈ Lp0.

Proposition 6.1.2. Let ρ : Γ y (X, ν) be a probability measure preserving action of
a finitely generated group. Then, for any 1 ≤ p <∞, the action ρ has a spectral gap
in Lp0 if and only it is expanding in measure.

Proof. If the action is not expanding in measure, then there exists a sequence of
measurable sets An with measure ν(An) ≤ 1/2 and ν(S±e ·An)/ν(An)→ 1. Looking at
the symmetric difference, we deduce that ν

(
(s ·An)4An

)
/ν(An)→ 0 for every s ∈ S±.

Denote by 1An the indicator function of the set An and let fn(x) := 1An(x)− ν(An).
The sequence {fn}n∈N lies in Lp0(X) and we have

‖s · fn − fn‖pp = ν(An r s · An) + ν(s · An r An) = ν
(
(s · An)4An

)

while

‖fn‖pp = ν(An)
(
1− ν(An)

)p
+
(
1− ν(An)

)
ν(An)p

≥ ν(An)
(
1− ν(An)

)p

≥ 1

2p
ν(An).

It follows that (fn) is a sequence of almost invariant vectors in Lp0.
For the converse implication, fix any 1 ≤ p < ∞. We need to show that if ρ is

ε-expanding then there is a constant δ > 0 so that for every function f ∈ Lp0(X)

we have
∑

s∈S±‖s · f − f‖p ≥ δ‖f‖p. We prove it first for real valued functions
f ∈ Lp0(X;R). By density, it is then enough to prove the statement for scale functions
of the form

f(x) =
N∑

i=0

αi1Ai(x)

with αi ∈ R and AN ⊆ AN−1 ⊆ · · ·A0.
There exists a constant c such that both the set

{
x
∣∣ f(x) > c

}
and

{
x
∣∣ f(x) < c

}

have measure smaller or equal than 1/2. Let g := f − c, then by Lemma 6.1.1 we have
that ‖g‖p ≥ 1

2
‖f‖p. Changing sign if necessary, we may assume that ‖g+‖p ≥ 1

4
‖f‖p

where g+ = max{g, 0}.
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Clearly ‖s · f − f‖p = ‖s · g − g‖p ≥ ‖s · g+ − g+‖p, thus we only need to find a
lower bound for the latter. The function g+ is still a scale function

g+(x) =
n∑

i=0

βi1Bi(x)

with Bi+1 ⊆ Bi, but this time we can also assume βi > 0 and ν(Bi) ≤ 1/2 for every
i = 0, . . . , n.

Since the Bi’s are nested, we have

∣∣s · g+ − g+
∣∣(x) ≥

n∑

i=0

βi
∣∣1Bi(s−1x)− 1Bi(x)

∣∣

≥
n∑

i=0

βi
(
1Bi∪sBi(x)− 1Bi(x)

)

= hs(x)− g+(x)

where

hs(x) :=
n∑

i=0

βi1Bi∪sBi(x).

Note that ∑

s∈S±
‖hs‖pp =

∫

R+

∑

s∈S±
ν
(
{x | hs(x)p ≥ r}

)
dr.

Since the action is expanding we have
∑

s∈S±
ν
(
{x | hs(x)p ≥ r}

)
≥
(∣∣S±

∣∣+ ε
)
ν
(
{x | g+(x)p ≥ r}

)
;

thus we get:
∑

s∈S±
‖hs‖pp ≥

∫

R+

(∣∣S±
∣∣+ ε

)
ν
(
{x | g+(x)p ≥ r}

)
dr =

(∣∣S±
∣∣+ ε

)∥∥g+
∥∥p
p

whence we deduce that there exists s ∈ S± such that ‖hs‖p ≥
(
1 + ε/|S±|

)1/p‖g+‖p.
Let δ′ :=

(
1 + ε/|S±|

)1/p − 1, then for the same s ∈ S± we have
∥∥s · g+ − g+

∥∥
p
≥
∥∥hs − g+

∥∥
p
≥ ‖hs‖p −

∥∥g+
∥∥
p
≥ δ′

∥∥g+
∥∥
p
.

and thus we obtain:

‖s · f − f‖p ≥
∥∥s · g+ − g+

∥∥
p
≥ δ′

∥∥g+
∥∥
p
≥ δ′

4
‖f‖p.

That is, f is not an almost-invariant vector. A fortiori, we obtain the desired inequality:∑
s∈S±‖s · f − f‖p ≥ δ′

4
‖f‖p.
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To finish the proof of the proposition, we now need to deal with complex valued
functions. Let f(x) = f1(x) + if2(x) be the decomposition of f into its real and
imaginary part. Both f1 and f2 have zero average and thus belong to Lp0(X;R). Note
also that the action respects the decomposition into the real and imaginary part:
s · f = s · f1 + i(s · f2). Then we have

‖s · f − f‖p =
[∫

X

(
(s · f1 − f1)2 + (s · f2 − f2)2) p2dν

] 1
p

≥
[∫

X

(1

2

(
|s · f1 − f1|+ |s · f2 − f2|

)2
) p

2
dν
] 1
p

≥ 1√
2

[∫

X

|s · f1 − f1|p + |s · f2 − f2|pdν
] 1
p

≥ 1√
2

(
‖s · f1 − f1‖pp + ‖s · f2 − f2‖pp

) 1
p

≥ 1√
2

2−
p−1
p

(
‖s · f1 − f1‖p + ‖s · f2 − f2‖p

)
.

For the last step we used the inequality |a+ b|p ≤ 2p−1(|a|p + |b|p). Thus we obtain
(∑

s∈S±
‖s · f − f‖p

)
≥ 1√

2
2−

p−1
p

∑

s∈S±

(
‖s · f1 − f1‖p + ‖s · f2 − f2‖p

)

≥ δ′

4
√

2
2−

p−1
p
(
‖f1‖p + ‖f2‖p

)

≥ δ′

4
√

2
2−

p−1
p ‖f‖p

as desired.

6.1.2 Some remarks and consequences

In this subsection we collect some consequences of Proposition 6.1.2. To begin with,
note that its proof provides explicit bounds on the expansion constant ε in terms of
the spectral gap constant δ and vice versa.

Moreover we obtain as a corollary an elementary proof of Lemma 2.4.7 in the
special case of actions of finitely generated groups:

Corollary 6.1.3. The existence of a spectral gap in Lp0 for a probability measure
preserving action of a finitely generated group Γ y X does not depend on 1 ≤ p <∞.

It was a classical problem (attributed to Ruziewicz) to decide whether the Lebesgue
measure was the only finitely additive probability measure on Sn−1 invariant under the

124



action of SO(n,R) for n ≥ 3. This was solved affirmatively ([Mar80, Sul81, Dri84])
using the following:

Theorem 6.1.4 (Rosenblatt [Ros81], Schmidt [Sch81]). Given a probability measure
preserving action of a countable group ρ : Γ y (X, ν) and fixed any 1 ≤ p <∞, ν is
the unique Γ-invariant finitely additive probability measure on X if and only if ρ has a
spectral gap in Lp0(X, ν).

Combining this result with Proposition 6.1.2 we obtain the following:

Corollary 6.1.5. A probability measure preserving action of a finitely generated group
Γ is expanding in measure if and only if it admits a unique finitely additive Γ-invariant
probability measure.

Remark 6.1.6. There is a one-to-one correspondence between finitely additive (invari-
ant) probability measures on X and (invariant) means on L∞(X).

Finally, Proposition 6.1.2 provides us with a proof of Theorem 2.8.3. Let Λi be a
sequence of finite index subgroups of Λ = 〈S〉 with increasing index. Endow the set of
left cosets Λ/Λi with the uniform probability measure. Then Λ acts on Λ/Λi by left
multiplication and, considering the complete partition, we have that the approximating
graph G(Λ y Λ/Λi) coincides with the right Schreier graph Schrr(Λ/Λi, S).

Considering the sequence of actions ρi : Λ y Λ/Λi, it follows from Proposition
6.1.2 and Lemma 5.2.3 that the approximating graphs are expanders if and only if1 all
those actions have a uniform spectral gap; which is the statement of Theorem 2.8.3.

Remark 6.1.7. Here we used the uniform aspects of our results to characterise expanders.
If one preferred not to do so and to stick with the formalism of a unique action on a
measure space (e.g. in the hope to apply Proposition 5.2.7), then one could proceed
as follows: if the groups Λi form a normal filtration (are normal and nested), then
the right Schreier graphs can be obtained as graphs approximating the action on the
profinite limit lim←−Λ/Λi equipped with the probability measure assigning to a Λi-coset
(seen as a subset of lim←−Λ/Λi) probability 1/[Λ : Λi]. Expansion can hence by checked
by studying the action Λ y lim←−Λ/Λi.

1 For the proof of the ‘only if’ part of the statement it is necessary to use the uniform bound on
the spectral gap in term of the expansion constant. This should be used together with the fact that
in this setting it is clear that a lower bound to the Cheeger constant is (uniformly) equivalent to a
lower bound on the expansion constant.
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6.2 Explicit examples via Kazhdan sets

We can now capitalize over the spectral criterion from Section 6.1 to produce a number
of concrete examples of expanding actions using the machinery of Kazhdan sets and
Kazhdan property (T).

In the following, let G be a locally compact second countable Hausdorff topological
group. We will use facts and conventions from Section 2.5.

6.2.1 Expansion and Kazhdan pairs

Let S be a finite subset of the topological group G and denote by Γ := 〈S〉 the
subgroup of G generated by S. If (X, ν) is a probability space and ρ : G y X is a
measure preserving action, we can investigate expansion properties of the restriction
of ρ to Γ and we obtain the following:

Proposition 6.2.1. The following are equivalent:

(i) the restriction ρ|Γ : Γ y (X, ν) is expanding in measure;

(ii) the representation πρ|Γ : Γ y L2
0(X) does not weakly contain the trivial represen-

tation IΓ;

(iii) there exists a constant ε > 0 such that (S, ε) is a Kazhdan pair for the represen-
tation πρ : Gy L2

0(X).

Proof. By Proposition 6.1.2 we know that ρ|Γ is expanding in measure if and only if
πρ|Γ : Γ y L2

0(X) has a spectral gap. Note that happens if and only if S is a Kazhdan
set for πρ|Γ (Remark 2.5.21).

Moreover, we know that when πρ|Γ admits a Kazhdan set, then S must be a
Kazhdan set as well because it generates Γ (Remark 2.5.23). Therefore, (i)⇔(ii)
follows from Lemma 2.5.19.

To prove (i)⇔(iii) it is now enough to note that, since πρ|Γ = (πρ)|Γ and S ⊆ Γ,
we have have that (S, ε) is a Kazhdan pair for πρ|Γ if and only if it is a Kazhdan pair
for πρ as well.

Remark 6.2.2. When (S, ε) is a Kazhdan pair for πρ, one can retrieve explicit bounds
on the expansion constant of ρ in term of the Kazhdan constant ε and vice versa
following the proof of Proposition 6.1.2.

In the rest of this section we describe some consequences of Proposition 6.2.1 (we
refer the reader to [CG11, Section 2] for more examples of actions of finitely generated
groups on measure spaces that have a spectral gap).
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6.2.2 A characterisation of Kazhdan sets

Schmidt, Connes and Weiss characterised groups with Kazhdan’s property (T) in term
of their ergodic actions. Specifically, they proved that G has property (T) if and only
if for every measure preserving ergodic action on a probability space ρ : Gy (X, ν)

the induced unitary representation πρ : Gy L2
0(X) admits a Kazhdan pair.

Using Remark 2.5.25, one can adapt the proof of the Schmidt-Connes-Weiss theorem
given in [BdlHV08, Theorem 6.3.4] to prove the following more precise statement:

Fact. Let G be a locally compact Hausdorff second countable group. Then a compact
subset K ⊆ G is a Kazhdan set of G if and only it is a Kazhdan set for every
representation πρ induced from an ergodic action ρ : Gy (X, ν).

Therefore, Proposition 6.2.1 implies the following:

Theorem 6.2.3. Let S ⊂ G be a finite subset of a locally compact Hausdorff second
countable group and let Γ := 〈S〉 ⊂ G. Then, S is a Kazhdan set of G if and only if
the restriction to Γ of every ergodic action ρ : Gy (X, ν) is expanding in measure.

Moreover, when S is a Kazhdan set of G, all the Γ-actions obtained as restrictions
of ergodic G-actions share a lower bound on their expansion constants depending only
on the Kazhdan constant of S in G.

Remark 6.2.4. Note that (the easy implication of) Theorem 6.2.3 implies in particular
that the restriction of an ergodic action of G to a subgroup Γ generated by a finite
Kazhdan set is again ergodic.

6.2.3 Non-compact Lie groups

In the setting of non-compact Lie groups, the work of Y.Shalom provides very general
means of proving spectral gap properties. In particular, he proved the following.

Theorem 6.2.5 ([Sha00], Theorem C). Let G =
∏n

i=1 Gi be a semisimple Lie group
with finite centre and let π be a unitary G-representation and H < G a closed
non-amenable subgroup. If either of the following is true:

(a) IGi ⊀ π|Gi for every simple factor Gi;

(b) IG ⊀ π and for every i = 1, . . . , n the closure of the projection of H on Gi is not
an amenable subgroup;
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then IH ⊀ π|H . Moreover, if µ is a measure on G such that the closure of the group
generated by the support supp(µ) satisfies (a) or (b), then the spectral radius of π(µ)

is strictly less than 1.2

Remark 6.2.6. Note that the condition IGi ⊀ π|Gi for every i = 1, . . . , n is stronger
than IG ⊀ π because almost invariant vectors for π are a fortiori almost invariant
vectors of π|Gi for each Gi.

As a corollary one can produce a multitude of examples of expanding actions: let
ρ : Gy (X, ν) be a measure preserving action of a semisimple Lie group with finite
centre and let π : G y L2

0(X) be the induced unitary representation. Assume that
IG ⊀ π|Gi for every Gi (resp. IG ⊀ π) and that S ⊂ G is a finite set such that the
closure of Γ := 〈S〉 in G is not amenable (resp. the closures of the projections of Γ to
the Gi’s are not amenable), and consider the probability measure µS± := 1

|S±|
∑

s∈S± δs.
The support of µS± is precisely S± and hence it generates the group Γ < G—which

we are assuming to satisfy the hypotheses of Theorem 6.2.5. In particular, it follows
from said theorem that the averaging operator π(µS±) has spectral radius strictly less
than 1. Since the set S± is symmetric, it is easy to check that π(µS±) is a self-adjoint
operator and hence its operator norm is equal to the spectral radius. In particular, we
have ‖π(µS±)‖ < 1 and hence S is a Kazhdan set for π (Proposition 2.5.22). Then
the restriction ρ|Γ : Γ y (X,µ) is expanding in measure by Proposition 6.2.1.3

2 Some extra explaination is in order. The support of a Borel measure on a topological space is
the set of points such that have a basis of neigbourhoods of positive measure

supp(µ) = {x ∈ X | µ(U) > 0 for every open neighbourhood x ∈ U ⊂ X}.

The support is a closed set, and if X is lcoally compact Hausdorff and µ is Radon, then its complement
X r supp(µ) has measure 0 (in this case supp(µ) can be defined as the smallest closed set satisfying
this condition).

In Shalom’s wording, to deduce that the spectral radius of π(µ) is less than 1 it is enough that “µ
is not supported on a closed amenable subgroup [of G]” or that “the projection of µ to every simple
factor is not contained on a closed amenable subgroup”.
In order to obtain the statement of Theorem 6.2.5 from Shalom’s original theorem, one needs to

note that if H < G is a closed subgroup and µ is supported in H, then supp(µ) ⊂ H because supp(µ)
is the smallest closed set where µ is supported. Therefore H contains the subgroup generated by
supp(µ) and its closure 〈supp(µ)〉. Closed subgroups of amenable groups are amenable, and therefore
we deduce that when 〈supp(µ)〉 is non-amenable then µ is not supported on a closed amenable
subgroup of G. Similarly, if the projection of µ to a factor Gi is supported on a closed group H, then
H must contain the closure of the projection of (the closure of) the subgroup generated by supp(µ).

3 For our applications we really need the ‘moreover’ statement of Theorem 6.2.5. In fact, if we try
to use only the statement concerning weak containements we deduce that, letting H := Γ < G, we
have IH ⊀ π|H . Still, this does not (a priori) imply that IΓ ⊀ π|Γ (which is what we need in order to
apply Proposition 6.2.1).
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Example 6.2.7. If a simple Lie group G has Kazhdan property (T) and finite centre
and ρ : G y (X, ν) is any measure preserving ergodic action then IG ⊀ π|G. If S
generates a discrete subgroup Γ < G, then Γ = Γ and hence ρ|Γ is expanding as soon
as Γ is not amenable. Note that, by the Tits Alternative Theorem, Γ is non-amenable
if and only if it contains a non-abelian free subgroup. A typical example of ergodic
action of G is the action by left multiplication G y G/Λ where Λ < G is a lattice.
More generally, if G < G′ where G′ is a finite product of connected, non compact,
simple Lie groups with finite centre and Λ is any irreducible lattice of G′, then Moore’s
Ergodicity Theorem implies that the action by left multiplication Gy G′/Λ is ergodic
if and only if the closure of G in G′ is not compact.

Remark 6.2.8. We wish to note (for later use), that any right invariant Riemannian
metric on G′ descends to a Riemannian metric on G′/Λ whose volume form is (a
multiple of) the restriction of the Haar measure and the action on the left G′ y G′/Λ is
by bilipschitz diffeomorphisms. In the example above, it follows that if the irreducible
lattice Λ is also uniform, then the actions Γ y G′/Λ′ are nice actions on compact
manifold and will hence allow us to construct expanders.

Remark 6.2.9. In the above example, we assumed G to have property (T), but the
subgroup Γ does not need to have it (nor does G′). Indeed, taking Γ to be any discrete
non-abelian free group would do. This is a very interesting feature, as it allows us
to build expanders out of actions of free groups and, more generally, of a-T-menable
groups.

In the same paper, Shalom constructed explicitly finite Kazhdan sets for algebraic
groups and he was also able to compute their Kazhdan constants [Sha00, Theorem A].
More precisely, he finds Kazhdan sets of m elements whose Kazhdan constant is

ε =

√
2− 2(

√
2m− 1/m)

(and we already noted (Remark 6.2.2) that these estimates immediately translate in
estimates for the Cheeger constants of the approximating graphs).

Remark 6.2.10. As a concrete example, Shalom proves that the matrices



1 2
0 1

0

0 In−2


 ,




1 0
2 1

0

0 In−2




form a Kazhdan set of two elements for SL(n,R) for every n ≥ 3.

129



6.2.4 Compact Lie groups

Theorem 6.2.5 can only be applied to non-compact Lie groups (because compact Lie
groups are amenable). Still, the case of compact Lie groups is all but devoid of interest.
In fact, one can show that every simple, connected, non-abelian, compact Lie group
admits finite Kazhdan sets [Sha99, Theorem 5.17].

This immediately provides us with examples of actions that are expanding in
measure. Indeed for any compact Lie group G equipped with its Haar measure ν we
can consider its action on itself by left multiplication. Since this action is ergodic,
it follows that for every group Γ < G generated by a finite Kazhdan set S of G, the
action Γ y (G,m) is expanding in measure. It is interesting to note that in this case
Lemma 2.5.27 implies that the converse is also true:

Corollary 6.2.11. Let G be a compact Lie group and Γ = 〈S〉 < G a finitely generated
subgroup. Then the action Γ y G is expanding in measure if and only if S is a Kazhdan
set of G.

Explicit examples are provided by Bourgain and Gamburd in [BG07]. There they
prove that if k elements g1, . . . , gk ∈ SU(2,C) generate a free subgroup of SU(2,C)

and they satisfy a non-abelian Diophantine property then they form a Kazhdan set
of SU(2,C). In particular, they show that when two matrices with algebraic entries
a, b ∈ SU(2,C) ∩ GL(2,Q) freely generate a free group Γ < SU(2,C), then every
ergodic action of SU(2,C) restricts to an expanding action of Γ.

An obvious example of an ergodic action of SU(2,C) on a compact space is the
action by left multiplication of SU(2,C) on itself. Alternatively, note that SU(2,C) is
the double cover of SO(3,R) and the action of the latter on the sphere S2 is ergodic.
Thus, we obtain the following:

Corollary 6.2.12. Let a and b be two independent rotations of S2 whose matrices
have algebraic entries and let F2 = 〈a, b〉 be the generated subgroup of SO(3,R). Then
the action F2 y S2 is expanding in measure.

Remark 6.2.13. The existence of actions by rotations on the sphere S2 that are
expanding in measure has already been successfully used in relation to the Ruziewicz
problem and to the problem of constructing finite equidistributed subsets of S2 (see
[Lub10] and Subsection 6.1.2).

The results of [BG07] have been later extended to SU(n) for any n ≥ 2 in [BG10]
and subsequently to all compact simple Lie groups in [BdS14]. These works build
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on the notion of non-abelian Diophantine property introduced in [GJS99] in order to
study spectral gap properties for generic subgroups of rotations.

For a generic k-tuple of elements in SU(2,C), it is known that the action on S2 of
the generated subgroup Γ < SU(2,C) is ergodic; and it is conjectured in [GJS99] that
the action of Γ should also have a spectral gap (which is a much stronger property).
A partial result is due to Fisher [Fis06] who managed to prove that if the conjecture
is false then the set of k-tuples inducing actions with spectral gap must have null
measure. It is unknown whether the group generated by a generic k-tuple has the
non-abelian Diophantine property (an affirmative answer to the latter would clearly
imply the conjecture).

More generally, it is unknown whether the action by left multiplication Γ y G of
a generic finitely generated dense subgroup Γ of a compact simple Lie group G has a
spectral gap.

6.3 Some actions with Banach spectral gap

In this section we briefly wish to provide some very concrete example of actions on nice
measure spaces that have E-valued spectral gap for every uniformly convex Banach
space. This will be used in conjunction with Proposition 5.4.3 to produce explicit
examples of superexpanders.

The idea is to mimic what is done with Kazhdan sets. That is, we showed already
that any ergodic measure preserving action of a finitely generated group with Kazhdan
property (T) must be expanding in measure. Similarly, if one can find an ergodic
action of a group with Lafforgue’s strong Banach property (T), then Proposition 2.5.30
will directly imply that such action must have the required Banach valued spectral
gap (it actually implies that it has E-valued spectral gap for every Banach space E of
non-trivial type).

In order to find examples of such actions, we use the approach that Margulis used
to solve the Banach-Ruziewicz problem [Mar80].

Lemma 6.3.1. For d ≥ 5, let Γd consist of matrices in SO(d,R) whose entries are
elements of Z[1

5
] (the subring of Q generated by the element 1

5
). Then Γd is an infinite

group with Lafforgue’s strong Banach property (T).

Proof. Consider the diagonal embedding of Γd into Gd = SO(d,Q5)× SO(d,R). Then
Γd is a cocompact lattice in Gd [Bor63].
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Whenever d ≥ 5, SO(d,Q5) is an almost simple algebraic group of higher rank (see
[Mar80]) and hence it has Lafforgue’s strong Banach property (T) (see [Lia14]). This
implies that also Gd has strong Banach property (T), since SO(d,R) is a compact
group. Lafforgue proved that strong Banach property (T) passes to cocompact lattices
[Laf08], which implies that Γd has strong Banach property (T).

Moreover, Γd is infinite because it is a lattice in SO(d,Q5), which is a group of
higher rank.

The nice thing with Γd is that it sits inside a compact Lie group and can hence be
used to produce measure expanding actions on Riemannian manifolds:

Lemma 6.3.2. Every continuous measure preserving ergodic action of SO(d,R) with
d ≥ 5 on a compact Riemannian manifold M restricts to an action of Γd that has
E-valued spectral gap for every Banach space E of non-trivial type.

Proof. The group Γd is in fact a dense subgroup of SO(d,R) (this is true for every
d ≥ 2 and can be proved by induction). We claim that GyM is a continuous ergodic
action of a Lie group on a Riemannian manifold and Γ < G is a dense subgroup, then
the restriction of the action to Γ must be ergodic.

Indeed, assume by contradiction that A ⊆ M s a Γ-invariant subset that has
measure 0 < ν(A) < ν(M). Since the action is measure preserving, we deduce by
ergodicity that there exists a g ∈ G such that ν(g(A)∩A) < ν(A)− ε for some ε small
enough.

Since ν is a Radon measure, for every δ > 0 there exists a compact set K ⊂ A

with ν(K) > ν(A)− δ. Since g(K) is compact, we have

ν
(
Nr(g(K)) ∩K

) r→0−−→ ν
(
g(K) ∩K

)
≤ ν

(
g(A) ∩ A

)
,

and we can therefore choose a radius r small enough so that ν
(
Nr(g(K)) ∩ K

)
≤

ν
(
g(A) ∩ A

)
+ ε

2
.

Since Γ is dense in G, the action is continuous and K is compact, there exists a
γ ∈ Γ close enough to g ∈ G such that d(γ(x), g(x)) < r for every x ∈ K. In particular
we have γ(K) ⊆ Nr(g(K)). We thus obtain a chain of inequalities

ν(γ(A) ∩ A) ≤ ν(γ(K) ∩K) + 2δ

≤ ν
(
Nr(g(K)) ∩K

)
+ 2δ

≤ ν(γ(A) ∩ A) +
ε

2
+ 2δ

≤ ν(A)− ε

2
+ 2δ.
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If we had chosen δ to be small enough, we would deduce that ν(γ(A) ∩ A) < ν(A),
against the assumption of Γ-invariance for A.

We have thus proved that the action Γd y M is ergodic. It follows that this
action must have the required Banach spectral gap because Γd has strong property (T)
(Proposition 2.5.30).

To find examples of ergodic actions on Riemannian manifolds it is enough to equip
SO(d,R) with any left-invariant Riemannian metric. The action by left translation
SO(d,R) y SO(d,R) is clearly ergodic. Also the natural action by rotations on the
sphere SO(d,R) y Sd−1 is ergodic. Thus we obtain:

Corollary 6.3.3. For every d ≥ 5, the actions Γd y SO(d,R) and Γd y Sd−1 have
E-spectral gap for every Banach space E with trivial type.

See [FNvL17] for (uncountably many) more examples of actions of groups on
manifolds that have Banach valued spectral gap.
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Chapter 7

Constructing appropriate partitions

In this chapter we introduce two fairly general strategies for producing examples of
metric measure spaces with good partitions where we can apply the results obtained
so far.

7.1 Voronoi tessellations

A convenient way for defining sufficiently regular measurable partitions on a metric
space (X, d) is given by the Voronoi tessellations.

7.1.1 Voronoi partitions and nets

Let Y be a countable discrete subset of a metric space X.

Definition 7.1.1. The Voronoi tessellation associated with Y ⊂ X is the family
V(Y ) := {R(y) | y ∈ Y } where where R(y) is the set of points of X that are closer to
y than to any other point of Y :

R(y) :=
{
x ∈ X

∣∣ d(x, y) < d(x, y′) for all y′ ∈ Y, y′ 6= y
}
.

Remark 7.1.2. If the metric space X is nice enough, the regions R(y) will be disjoint
open sets. In general these regions need not be open (e.g. X is not proper). Still,
since Y is countable, they will always be measurable sets.

Let X be equipped with a Borel measure ν. In case that for any couple of points
y 6= y′ of Y the hyperplane P (y, y′) := {x ∈ X | d(x, y) = d(x, y′)} has measure
zero, the Voronoi tessellation V(Y ) covers a conull subset of X and it is therefore a
measurable partition of X.
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Now the hope is that, if the spaceX is reasonable enough and Y is nicely distributed,
the Voronoi tessellation should provide us with nice measurable partitions to which
we can apply the approximating graph construction to produce expanders.

Assume that Y is an (r, ε)-net (Subsection 2.1.3). It follows that for every y ∈ Y
the region R(y) is contained in the ball B(y, r) and contains the ball B

(
y, ε

2

)
. If

we know that the space X satisfies some sort of ‘uniform doubling’ condition, so
that the ratios ν(B(x, r))/ν(Bx, ε) are bounded in function of r/ε, we can then apply
Theorem 5.2.12 to any sequence of Voronoi tessellations V(Yn) where the Yn are
(rn, εn)-nets such that rn → 0 and rn/εn is bounded (e.g. rn-nets).

Moreover, if Γ y X is an action by Lipschitz maps and the space X has bounded
geometry (Definition 2.1.10), then we would also immediately obtain that the ap-
proximating graphs G

(
ΓyX;V(Yn)

)
and G̃

(
ΓyX;V(Yn)

)
have bounded degrees

(Remark 5.3.4). Note that in the general case the bound on the degree depends on
the function fε of the definition of bounded geometry. Still, for well behaved spaces
(e.g. doubling) one expects to be able to construct uniform bounds.

7.1.2 Regularity of Voronoi partitions of manifolds

Typical examples of well-behaved metric spaces are the Riemannian manifolds. Let
(M,%) be a Riemannian manifold with its Riemannian metric and volume (Section 2.3).

To begin with, note that in the setting of complete Riemannian manifolds Voronoi
tessellations do provide us with measurable partitions. In fact, every hyperplane
P (y, y′) := {x ∈ X | d(x, y) = d(x, y′)} has measure 0 by Lemma 2.3.11.

Let Yn ⊂ M be a sequence of (rn, εn)-nets with rn → 0 and such that the ratios
rn/εn are uniformly bounded by a constant ξ (one can always choose such a sequence).
Let also Γ be a finitely generated group acting on M by homeomorphisms. We can
then apply the approximating procedure to the Voronoi tessellations and obtain the
following:

Theorem 7.1.3. The action Γ y M is expanding in measure if and only if the
measure approximating graphs G

(
ΓyM ;V(Yn)

)
and/or the topology approximating

graphs G̃
(
ΓyM ;V(Yn)

)
share a uniform lower bound on their Cheeger constants.

In particular, if the action is by quasi-symmetric homeomorphisms with bounded
measure distortion, then Γ y M is expanding if and only if

(
G
(
ΓyM ;V(Yn)

))
n∈N

and
(
G̃
(
ΓyM ;V(Yn)

))
n∈N are families of expanders.

Proof. The Riemannian volume is a Radon measure. For every y ∈ Yn the tile
R(y) ∈ V(Yn) has diameter bounded by 2rn and hence mesh

(
V(Yn)

)
→ 0 as n grows
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to infinity. We already noted that for every y ∈ Yn we have B
(
y, ε

2

)
⊆ R(y) ⊆ B(y, rn),

thus, in the notation of Subsection 2.3.3, for every y, y′ ∈ Yn we have:

ν(R(y))

ν(R(y′))
≤ ν

(
B(y, rn)

)

ν
(
B
(
y′, εn

2

)) ≤ VM(rn)

vM
(
εn
2

) ,

and the latter is bounded by a constant depending only on M and 2rn
εn

(and hence ξ)
by Lemma 2.3.14. It follows that the Voronoi tessellations have uniformly bounded
measure ratios and we can hence apply Theorem 5.2.12 to prove the first part of the
statement.

It now remains to find a uniform upper bound on the degrees to deduce the
equivalence of expansion in measure and the construction of expander graphs. Note
that every tile has eccentricity bounded above by 2ξ and that M is a doubling
metric measure space (Corollary 2.3.15). When we assume that the action be by
quasi-symmetric homeomorphisms with bounded measure distortion, we are then
under the hypotheses of Proposition 5.3.2, which completes the proof.

Since diffeomorphisms of compact Riemannian manifolds are bi-Lipschitz (Corol-
lary 2.3.3), combining Theorem 7.1.3 with Proposition 6.1.2 yields the following:

Corollary 7.1.4. If Γ yM is an action by measure preserving diffeomorphisms on
a compact manifold, then the measure (or topology) approximating graphs associated
with the Voronoi tessellations V(Yn) are expanders if and only if the action has a
spectral gap.

Note that a number of the concrete examples of expanding actions that we gave
in Chapter 6 satisfy the hypotheses of Corollary 7.1.4 and can hence be immediately
used to construct families of expanders. In particular, we report the following:

Corollary 7.1.5. Let S ⊂ SO(3,R) be a finite set of matrices with algebraic co-
effients that generates a free subgroup FS < SO(3,R). Then the approximating graphs
G
(
FS yS2;V(Yn)

)
are expanders.

Corollary 7.1.6. Let Γd ⊂ SO(d,R) be as in Corollary 6.3.3, then for every d ≥
5, the approximating graphs G

(
Γdy SO(d,R);V(Yn)

)
and G

(
ΓdySd−1;V(Yn)

)
are

superexpanders.
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7.1.3 A note on cardinalities

If Yr ⊂ M is an r-net in a compact Riemannian manifold, we have that the balls
B(y, r

2
) with y ∈ Yr are disjoint, while the balls B(y, r) cover M . It follows that

vM

(r
2

)
|Yr| ≤ Vol(M) ≤ VM(r)|Yr|.

Recall that the ratio VM(2r)/vM(r) is uniformly bounded (Lemma 2.3.14). This,
together with Theorem 7.1.3, yields the following:

Corollary 7.1.7. Let ρ : Γ yM be a measure expanding action by quasi-symmetric
homeomorphisms on a compact Riemannian manifold. Then there exists a constant C
depending only on M such that for every n ∈ N there exists a partition Pn of M for
which

n ≤
∣∣∣G̃
(
ΓyM ;Pn

)∣∣∣ ≤ Cn.

and such that G̃
(
ΓyM ;Pn

)
is a sequence of expanders.

Proof. The function VM (r) is continuous (and for small values it behaves like rdim(M)),
thus there exists an appropriate value rn > 0 such that VM(rn) = Vol(M)/n. Let Yn
be an rn-net and Pn = V(Yn) the Voronoi tessellation. Then we have

n =
Vol(M)

VM(r)
≤ |Pn| ≤

Vol(M)

vM( r
2
)
≤ Cn

as desired.

If one is willing to allow worse Cheeger constant, then an even sharper control on
the cardinalities of the vertex sets can be obtained.

Proposition 7.1.8. Let ρ : Γ y M be a measure expanding action by Lipschitz
homeomorphisms on a compact Riemannian manifold. Then for every sequence of
natural numbers (kn)n∈N ⊆ N with kn → ∞, there exists a sequence of partitions
Pn of M with |Pn| = kn and such that the approximating graphs G̃

(
ΓyM ;Pn

)
are

expanders.

Proof. By Theorem 7.1.3, it is enough to show that for every k ∈ N there exists
a (rk, εk)-net Yk ⊂ M of cardinality k and such that the ratios rk/εk are uniformly
bounded.

This is done quite easily. Fix any r > 0 and let Yr be a r-net. By Zorn’s lemma, it
can be extended to a r

2
net Y r

2
⊃ Yr. Note that every intermediate set Z

Yr ⊆ Z ⊆ Y r
2
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is r-dense and r
2
separated, i.e. a (r, r/2)-net. Adding all the points one at the time

we thus obtain (r, r/2)-nets of every cardinality between |Yr| and
∣∣Y r

2

∣∣. Repeating the
process produces nets of any cardinality.

Corollary 7.1.9. It is possible to construct expanders and superexpanders whose
graphs have arbitrary cardinality.

7.2 Actions on sequences of covers

It this section we show how to obtain approximating graphs with bounded degrees by
looking at actions on sequences of covers. In some sense what we are going to do is a
complementary approach to what has been done so far. That is, we have been fixing
an action on a nice space and obtained a sequence of graphs by considering finer and
finer partition; now we change perspective and we will obtain sequences of graphs by
approximating actions on larger and larger spaces while the size of the tiles stays the
same. What we have in mind is the following:

Example 7.2.1. Consider the natural action by translations R2 x Z2 and let Xn be
the quotient R2/(nZ)2. We thus obtain a sequence of coverings X0 ←− X1 ←− · · · .
Note that natural tiling of R2 by unit squares descends to a tiling Tn of Xn into n2

tiles of area 1.
Consider now the natural left action of SL(2,Z) on R2. For every n ∈ N, this

action descends to a continuous action on Xn because the lattice (nZ)2 is preserved.
We can thus look at the (measure) approximating graphs G(SL(2,Z)yXn; Tn) and it
is simple to observe that these graphs have uniformly bounded degree.

7.2.1 Generalities on fundamental domains

We begin with some definitions.1 Let (X, d, ν) be a connected topological space with
a Borel measure and let Λ be a countable group with a right action (X, ν) x Λ by
homeomorphisms.

Definition 7.2.2. A closed subset ∆ ⊆ X is a regular fundamental domain for the
action of Λ if

• ∆ is the closure of a connected open subset ∆ ⊂ X;

• ν(∂∆) = 0;
1The conventions that we use here are not standard.
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• ∆ intersects the orbit x · Λ for every x ∈ X;

• ∆ can intersect its homeomorphic copies under the Λ-action only on its boundary:
∆ ∩ (∆ · h) ⊆ ∂∆ for every h ∈ Λr {e}.

Remark 7.2.3. Not every action admits a regular fundamental domain. In particular,
note that any point of X with non trivial stabiliser can only lie on the boundary of
translates of a regular fundamental domain.

From now on, assume that the action X x Λ admits a regular fundamental domain
and let ∆ be a fixed such domain. Note in particular that, since ν(∂∆) = 0, the set
{∆ · h | h ∈ Λ} is a measurable partition of X. We will denote such partition by T .
we will generally denote a generic region in T by R, while we keep the symbol ∆ for
the fixed (open) fundamental domain. That is, a generic region R ∈ T will be equal
to ∆ · h for a unique h ∈ Λ.

Let Λ = Λ0 >f Λ1 >f Λ2 >f · · · be a residual filtration of Λ (i.e. such that⋂
i∈N Λi = {e}) and let Xi := X/Λi be the quotient space. This gives a sequence of

finite index surjections:
X0 ←− X1 ←− X2 ←− · · ·

These surjections need not be covers, as we do not require the action to be free. Since
they still enjoy some of the properties of coverings of spaces, we call such maps singular
covers. Note that they are open maps (i.e. they send open set to open sets).

Let πi : X → Xi denote the singular covering map and let R be any region in T .
Then the restriction of πi to R is injective for every i ∈ N. Moreover, if R′ is a second
region in T , we have that whenever their images under πi intersect non trivially we
must in fact have πi(R) = πi(R

′). Let Ti be the set of subsets of Xi that are images
under πi of regions in T . It follows from the above discussion that the regions in Ti
are disjoint open sets such that the union of their closure covers the whole of Xi.

Note also that there is a natural bijection between regions in Ti and left cosets of
Λi in Λ. In fact, the preimage of a region πi(∆ · h) ∈ Ti is equal to the disjoint union
of the regions ∆ · (hk) with k ∈ Λi, i.e. it the union of the images of (the interior of)
the fundamental domain under the elements in the coset hΛi ∈ Λ/Λi.

Assume now that the action (X, ν) y Λ be measure preserving. Then ν induces
a natural measure νi on Xi by imposing that the restriction of νi to a region in Ti
coincides with the restriction of ν to with a region in T . That is, if A ⊆ πi(R) = π(∆·h)

is a measurable subset, we let

νi(A) := ν
(
π−1
i (A) ∩R

)
= ν

(
π−1
i (A) · h−1 ∩∆

)
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(this is well-defined because the action is measure-preserving). For a general measurable
set A ⊆ Xi we define πi(A) as the sum

∑
R∈Ti ν(A ∩R).

Note that since ν(∂∆) = 0 we have that Ti is a measurable partition (i.e. partitions
a set of co-null measure) for every i ∈ N. Moreover, if Xi → Xj is a (singular) cover
of index D then the volume of the preimage of any set A ⊆ Xj will be Dνj(A) (the
degree of these singular covers can be defined as the cardinality of the preimage of a
point lying in one of the regions R. Such definition does not depend on the specific
point within a fixed region, and it is constant when varying the region because the
cover is obtained from a quotient by a group action).

7.2.2 Compatible actions

Again, let (X, ν) x Λ be a measure preserving action with regular fundamental domain
∆, (Λi)i∈N a filtration and (Xi)i∈N the quotients with their measurable partitions Ti.
This time we also assume that the measure ν is strictly positive, i.e. it is such that
every open set has strictly positive measure.

Let also Γ = 〈S〉 be a finitely generated group with a left measure-class preserving
action Γ y (X, ν). We say that such action is compatible with the filtration (Λi)i∈N if
for every g ∈ Γ, h ∈ Λi and x ∈ X there exists an h′ ∈ Λi so that g(x · h) = g(x) · h′.
That is, ρ is compatible if it induces a quotient action on X/Λi for every i ∈ N. Let ρi
denote the induced action on Xi. Note that ρi still preserves the measure class of νi.

Given a compatible action ρ we can now consider the (measure) approximating
graphs G

(
ρi : ΓyXi ; Ti

)
and we thus obtain an infinite sequence of graphs of increasing

cardinality. Note that two regions R,R′ ∈ Ti form an edge in G(ΓyXi; Ti) if and
only if there exists an s ∈ S± such that s(R) ∩R′ 6= ∅. This is because νi is a strictly
positive measure on Xi and the regions R and R′ are open.

We will say that a graph morphism f : G → G ′ is locally surjective if the link of
every vertex v of G surjects onto the link of the image of v. That is, for every vertex
w ∈ G ′ linked to f(v) by an edge there exists a vertex w′ ∈ G linked to v by an edge
and such that w = f(w′).

Lemma 7.2.4. The quotient map Λ→ Λ/Λi induces a surjective and locally surjective
graph morphism G(ΓyX; T )→ G(ΓyXi; Ti).

Proof. Since T and Ti are in natural bijection with Λ and Λ/Λi, the quotient map
does define a surjection of the vertex sets of the approximating graphs. We need to
show that this is a graph morphism.
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Since ρ is a compatible action, for every g ∈ Γ and A ⊆ X we have g · πi(A) =

πi(g ·A). Note that if (R,R′) is an edge in G(ΓyX; T ), then ν
(
s(R)∩R′

)
> 0 for some

s ∈ S±. Thus, we have νi
(
s(πi(R)) ∩ πi(R′)

)
= νi

(
πi(s(R)) ∩ πi(R′)

)
≥ ν

(
s(R) ∩R′

)

is positive and hence
(
πi(R), πi(R

′)
)
is an edge of G(ΓyXi; Ti).

To prove that the morphism is locally surjective, let R ∈ T be any region. If(
πi(R), πi(R

′)
)
is an edge of G(ΓyXi; Ti) then νi

(
πi(s(R))∩ πi(R′)

)
must be positive.

Since π−1
i

(
πi(s(R))

)
= s(R) · Λi, it follows from the definition of νi that there must

exist an h ∈ Λi so that ν
(
s(R) ∩ (R′ · h)

)
> 0, therefore

(
πi(R), πi(R

′)
)
is the image

of the edge (R,R′ · h) of G(ΓyX; T ).

It follows that as soon as the graph G(ΓyX; T ) has bounded degree then all
the graphs G(ΓyXi; Ti) have uniformly bounded degree as well. In particular, if
one knows that G(ΓyX; T ) has bounded degree and that the actions Γ y Xi are
uniformly expanding in measure, then the graphs G(ΓyXi; Ti) are a sequence of
expanders.

For example, let G be an (non-compact) connected Lie group and Λ < G a
cocompact lattice. Fix any right-invariant2 Riemannian metric on G then the right
action G x Λ admits a compact regular fundamental domain ∆ (e.g. consider the
Voronoi tiling associated with Λ ⊂ G), and we thus obtain a partition T .

Let now S ⊂ G be any finite subset and Γ = 〈S〉 the generated subgroup. The
action on the left Γ y G is by bi-Lipschitz diffeomorphisms (the differentials at any
two points are conjugated by the right-action of G and they hence have the same
norm). It follows that the graph G(ΓyG; T ) has bounded degree.

Moreover, the left action Γ y G commutes with the right action Gx Λ and it is
hence compatible with any filtration of Λ. Choose now any sequence Λi < Λ. The left
action Gy G/Λi is always ergodic, therefore if S is a Kazhdan set of G we deduce
that the actions Γ y G/Λi have uniform spectral gap. It follows that the graphs
G(ΓyG/Λi; Ti) are expanders.

It is also known that the actions described in Example 7.2.1 are uniformly expanding
in measure. We thus obtain expanders in this case as well. We wish to remark that
these expanders are not new: these are in fact (equivalent to) the first known examples
of expanders originally discoverd by Margulis in [Mar73] (see also [GG81]).

2I am sorry.
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Chapter 8

Warped cones and warped systems

In this chapter we explore the strong connection between approximating graphs and
warped metrics and use it to prove various rigidity results.

8.1 Roe’s warped cone

I originally learned about John Roe’s warped cone construction through his paper
on property A [Roe05], but he had actually introduced this construction some time
before. Indeed, he writes about it in [Roe96, Chapter 2] and [Roe95]. We shall follow
the exposition given in [Roe05].

Remark 8.1.1. It is quite interesting to go back and read those original works, as the
current research focus concerning warped cones is fairly different from the original
flavour that they had in Roe’s original work.

8.1.1 Warped cones of manifolds

We begin by giving Roe’s definition as in [Roe05]. Let (M,%) be a compact Riemannian
manifold, the open cone on M is the space O(M) := M × [1,∞) with the metric dO
induced by the Riemannian metric %O := t2%+dt2, where dt2 is the standard Euclidean
metric on R.

Remark 8.1.2. If M = Sn is the standard sphere, then the open cone O(Sn) is simply
the truncated Euclidean cone. That is, O(Sn) is isometric to the space Rn+1 rB(0, 1)

equipped with its path-metric (not the subset metric coming from Rn+1 = En+1).
With this identification, the level set Sn × {t} with t ≥ 1 is mapped onto the sphere
∂B(0, t) ⊆ Rn+1 rB(0, 1).

If one only cares about spaces up to bi-Lipschitz equivalence (which we do), one
can avoid mentioning Riemannian manifolds and simply do as follows: let M ↪→ Sn be
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any smooth embedding (there always is such an embedding for n large enough), then
define the open cone O(M) as the subset of Rn+1 rB(0, 1) consisting of rays passing
through M ⊆ Sn = ∂B(0, 1). One can then check that, as long as M is compact,
different choices of embeddings produce bi-Lipschitz equivalent spaces.

Remark 8.1.3. As currently defined, the cone O(M) is a Riemannian manifold with
boundary. One could have also considered the analogous cone metric on the set
M × (0,∞) to obtain a (non complete) Riemannian manifold without boundary; or
the quotient of M × [0,∞) collapsing the set M × {0} to a point in order to obtain a
(complete) pseudo-manifold with a singularity at 0. As we are mainly concerned with
coarse geometry, all the approaches of above are equivalent as long as the manifold M
has finite diameter (which is always the case if M is compact).

Let now Γ = 〈S〉 be a finitely generated group and γ yM an action by homeo-
morphism. Letting g · (x, t) := (g · x, t) naturally induces an action of Γ on the cone
O(M) by homeomorphisms that fix the coordinate t.

Definition 8.1.4. The warped cone OΓ(M) of the manifold M under the action of Γ

is the metric space
(
M × [1,∞), δΓ

)
, where δΓ = δS is the metric obtained warping

the cone metric dO of O(M) = M × [1,∞).

Note that the definition of warped cone depends on the choice of generating set.
Still, different generating set produce coarsely equivalent (in fact, bi-Lipschitz) warped
cones.

8.1.2 Warped metrics and Lipschitz conjugations

We now wish to study how the coarse geometry of a warped space depends on (the
conjugacy class of) the action. We prove the following:

Lemma 8.1.5. Let (X1, d1) and (X2, d2) be metric spaces, Γ1 = 〈S1〉 and Γ2 = 〈S2〉
be finitely generated groups, and Γ1 y X1 and Γ2 y X2 actions by homeomorphisms.
Assume that there exist a (L,A)-coarsely Lipschitz map ϕ : Γ1 → Γ2 and a ϕ-equiv-
ariant L-Lipschitz map F : (X1, d1) → (X2, d2). Then F : (X1, δS1

) → (X2, δS2
) is

(L+ A)-Lipschitz.

Proof. By Lemma 2.2.5 for every x, y ∈ X1 we have:

δS1
(x, y) = inf

{
n+

n∑

i=0

d(xi, yi)
}
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where the infimum is taken over n ∈ N and (n + 1)-tuples x0, . . . , xn and y0, . . . , yn

such that x = x0, y = yn and xi = si(yi−1) for some si ∈ (S1)±.
Using the triangle inequality and the fact that F is ϕ-equivariant, we obtain:

δS2

(
F (x), F (y)

)
≤

n∑

i=0

δS2

(
F (xi), F (yi)

)
+

n−1∑

i=0

δS2

(
F (yi), F (si · yi)

)

≤
n∑

i=0

d2

(
F (xi), F (yi)

)
+

n−1∑

i=0

δS2

(
F (yi), ϕ(si) · F (yi)

)

≤
n∑

i=0

Ld1(xi, yi) +
n−1∑

i=0

L+ A

≤ (L+ A)
(
n+

n∑

i=0

d(xi, yi)
)

and hence the claim follows.

Corollary 8.1.6. Let X1, X2, Γ1, Γ2, ϕ and F be as in Lemma 8.1.5. If ϕ and F
are L-bi-Lipschitz equivalences, then F is a L-bi-Lipschitz equivalence also with respect
to the warped metrics δS1

and δS2
.

Proof. It is enough to note that, as we required both ϕ and F to be bi-Lipschitz
equivalences, the inverse map F−1 is ϕ−1-equivariant (because φ is a bijection). We
can apply thus apply Lemma 8.1.5 to both F and its inverse F−1 and we deduce that
they are L-Lipschitz maps.

Corollary 8.1.7. If two actions on manifolds ρ1 : Γ y M1 and ρ2 : Γ y M2 are
conjugated by a bi-Lipschitz equivalence F : M1 → M2 ( i.e. F is an equivariant
bi-Lipschitz equivalence), then OΓ(M1) and OΓ(M2) are bi-Lipschitz equivalent.

Proof. It is enough to notice that F extends to an equivariant bi-Lipschitz equivalence
O(M1)→ O(M2) given by (x, t) 7→ (F (x), t).

Remark 8.1.8. Looking at the statement of Lemma 8.1.5, one would expect that when
ϕ is a (L,A)-quasi-isometry then F should provide us with a (L + A)-bi-Lipschitz
equivalence between the warped metrics. This is not the case, because F−1 needs not
be ϕ-equivariant (where ϕ is the coarse inverse). In fact, letting X1 = X2, Γ1 = {e}
and Γ2 any finite group with an action X2 with unbounded displacement, one can see
that the identity map X1 → X2 does not produce a coarse equivalence with respect to
the warped metrics.
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It follows that to produce a statement implying that F induces a quasi-isometric
equivalence between the warped metrics one also needs to require that the inverse F−1

be close to be ϕ-equivariant; i.e. we need that F−1(x2) and F−1(s · x2) be at bounded
distance in (X1, δS1

) for every s ∈ (S2)± and x2 ∈ X2.
It is interesting to compare this issue with the fact that there are examples of

graphs (and groups) that are quasi-isometric but not bi-Lipschitz equivalent (see
[DPT15] and references therein).

8.1.3 Extending the definition to general metric spaces

We now wish to extend the definition of warped cones to actions on more general
metric spaces. Since the warping procedure is well-defined for every metric space, the
only thing that needs to be decided is how to define the space that has to play the
role of the open cone O(M).

Since J. Roe was mostly concerned with rather nice spaces (e.g. compact manifold
and finite simplicial complexes), his idea was to exploit what noted in Remark 8.1.2.
That is, if a metric space X admits a bi-Lipschitz embedding into the sphere Sn, then
one can define O(X) as the subset X × [1,∞) ⊂ Sn × [1,∞) = O(Sn). Note that this
notion of O(X) is only defined up to bi-Lipschitz equivalence.

A more general and intrinsic approach is that of Druţu–Nowak [DN17], which is
also extensively used by D. Sawicki. That is, let (X, dX) be any metric space such
that diam(X) ≤ 2 and define dXR :

(
X × [1,∞)

)2 → R by

dXR
(
(x, t), (x′t′)

)
:= min{t, t′}dX(x, x′) + |t− t′|. (8.1)

It is then simple to check (see [Saw15]) that the dXR defines a metric on X × [1,∞).

Remark 8.1.9. Note that dXR does not satisfy the triangle inequality if diam(X) > 2.
Indeed, any two points on the same level X × {t} should have distance tdX(x, x′).
If we choose an appropriate third point on the level X × {1}, we should obtain by
triangle inequality tdX(x, x′) ≤ dX(x, x′) + 2(t− 1); whence (t− 1)d(x, x′) ≤ 2(t− 1)

and hence d(x, x′) ≤ 2.
Still, since we are only concerned about spaces up to bi-Lipschitz equivalences, we

are always entitled to rescale a metric space and we can thus use (8.1) to define a
metric on every metric space with bounded diameter.

First off, we wish to show that when M is a compact manifold with diam(M) ≤ 2,
using the metric dMR instead of the cone metric dO produces equivalent results. Given
a metric d, let td denote the metric d rescaled by t. We begin with the following:
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Lemma 8.1.10. Let (M,%) be a compact Riemannian manifold and d its induced
Riemannian metric. Then there exists a constant L depending only on diam(M) such
that for every (x, t) and (x′, t′) in M × [1,∞) we have

dO
(
(x, t), (x′t′)

)
≤ dXR

(
(x, t), (x′t′)

)
≤ LdO

(
(x, t), (x′t′)

)
.

The statement holds also when diam(M) > 2 and dXR is not a metric.

Proof. Assume without loss of generality that t ≥ t′, so that

dXR
(
(x, t), (x′, t′)

)
= (t− t′) + t′d(x, x′).

Then dXR
(
(x, t), (x′, t′)

)
is equal to the length of the path going from (x, t) to (x, t′)

moving on a straight line and then proceeding to (x′, t′) following a geodesic of M .
By the definition of the Riemannian distance, it immediately follows that dO ≤ dXR.

Conversely, for every (x, t), (x′, t′) ∈M × [1,∞) there exists a geodesic γ : [0, 1]→
O(M) such that ‖γ‖ = dO

(
(x, t), (x′, t′)

)
. Let γ̃ : [0, `] → M be the arc-length

reparametrisation of the projection of the path γ to the base set set M × {1}. Note
that, since γ is a geodesic of

(
O(M), dO

)
, then γ̃ must be a geodesic of M (both

Riemannian and metric). In particular, ` = d(x, x′) ≤ diam(M).
Define the map

H : [0, `]× [1,∞) O(M)

(s, t) (γ̃(s), t).

Since the pull back of a Riemannian metric tensor through a smooth curve α is equal to
the Euclidean length ds2 rescaled by the (square of) the speed of α, then the pull-back
of the Riemannian metric tensor %O through H is just a standard cone metric

H∗%O = t2ds2 + dt2,

and H is an isometric embedding of [0, `] × [1,∞) with respect to the induced
Riemannian metric. We thus have that the geodesic γ gives us a geodesic in [0, `]×[1,∞)

as well and that dO
(
(x, t), (x′, t′)

)
= d[0,`]×[1,∞)

(
(0, t), (`, t′)

)
= ‖γ‖.

Computing the distance between (0, t) and (`, t′) in the cone is now a straightforward
exercise of Euclidean geometry and one can show that it satisfies:

d[0,`]×[1,∞)

(
(0, t), (`, t′)

)
≥





(
t2 + (t′)2 − 2tt′ cos(`)

) 1
2 if L ≤ π

t+ t′ if ` ≥ π
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(the inequality comes from the fact that we removed the tip of the cone [0, `]× (0, 1),
otherwise equality would hold).

Now, if ` ≥ π we have

dO
(
(x, t), (x′t′)

)
≥ t+ t′ ≥ 2t′ =

2t′

`
d(x, x′) ≥ 2

`
t′d(x, x′).

For ` < π, we have

dO
(
(x, t), (x′t′)

)
≥
(
t2 + (t′)2 − 2tt′ cos(`)

) 1
2

≥
(

(t− t′)2 + 2tt′(1− cos(`))
) 1

2

≥ 1√
2

(
|t− t′|+

√
2tt′
√

1− cos(`)
)

=
1√
2

(
t− t′ +

√
2tt′

√
2 sin2

( `
2

) )

≥ 1√
2

(√
2tt′

√
2 sin2

( `
2

) )

≥ 1√
2

(
t′
√

2 ·
√

2

π
`
)

=

√
2

π
t′d(x, x′)

(where we used that sin(x) ≥ 2x/π for x ≤ π/2. We deduce that

dXR
(
(x, t), (x′t′)

)
≤ LdO

(
(x, t), (x′t′)

)

for L := max
(

π√
2
, diam(M)

2

)
.

Corollary 8.1.11. With the notation of Lemma 8.1.10, we have that for every t0 ≥ 1,
the level set M ×{t0} with the restriction of the metric dO is L-bi-Lipschitz equivalent
to the metric space (M, t0d).

Remark 8.1.12. A different way to put a metric on the set X × [1,∞) that is more
reminiscent of the cone construction for manifold is to consider the 0-cone over X
as defined in [BH13, Chapter I.5]. This is a more natural generalisation because
the 0-cone over a compact Riemannian manifold M should be equal to the pseudo
manifold M × [0,∞) equipped with the cone Riemannian metric.

Remark 8.1.13. If one wishes to use a definition such as (8.1) even for a geodesic
metric space X with diameter larger than 2, a natural choice would be to define the
distance as the path-distance generated by said expression. This construction could
then be applied to spaces with unbounded diameter as well, and a modification of
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Lemma 8.1.10 should imply that the maps sending the metric spaces (X, t0d) to the
level set X × {t0} are uniform coarse embeddings (note that here we are not claiming
that they should be quasi-isometric embedding).

Lemma 8.1.10 entitles us to give the following:

Definition 8.1.14. Let Γ = 〈S〉 be a finitely generated group acting on a general
metric space X with diam(X) ≤ 2. The warped cone is the metric space OΓ(X) :=(
X × [1,∞), δΓ

)
where δΓ = δS is the warping of the metric dXR.

Again, the warped cone (without specifying a generating set) is only defined up
to bi-Lipschitz equivalence, and, thanks to Lemma 8.1.5 and Lemma 8.1.10, we have
that this definition is compatible with the definition of warped cones for compact
manifolds.

8.2 Warped systems

In most situations, working with the actual warped cone can be quite cumbersome,
while what one really cares about is just the behaviour of the level sets X × {t} as t
grows to infinity. For this reason we find it convenient to introduce another piece of
terminology to better describe these.

8.2.1 A few definitions

For a metric space (X, d) and a parameter t ≥ 1, we denote by dt := td the rescaling
of the metric d by t. If S is a finite set of homeomorphisms of X, we denote by δtS the
warping of the metric dt along S.

Definition 8.2.1. Given a finite set S of homeomorphisms of a metric space (X, d)

(equivalently, an action of the free group FS y X), its warped system WSys
(
FS y

(X, d)
)
is the data of the family of metric spaces

{
(X, δtS)

∣∣ t ∈ [1,∞)
}
together with

the set of generating homeomorphisms S (we will usually drop the distance d from
the notation).

We say that a warped system satisfies a property P asymptotically if if there exists
a parameter t0 large enough so that (X, δtS) satisfies P for every t ≥ t0.

Remark 8.2.2. Note that warped systems are completely well-defined, not only up to
bi-Lipschitz equivalent because the set S is explicit. Note also that even if a set S ′ is
obtained from S only by taking some duplicates of some homeomorphism, then the
warped systems WSys

(
FS y X

)
and WSys

(
FS′ y X

)
are formally different (even

though the metric spaces coincide).
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In the sequel we will want to study the (uniform) coarse geometry of warped systems.
Since we are using the convention (Subsection 2.6.3) that a coarse equivalence between
two sequences of metric spaces (Xn)n∈N and (Yn)n∈N is a sequence of uniform coarse
equivalences Xn ∼ Yn, it is natural to say that two warped systems WSys

(
FS y X

)

and WSys
(
FS′ y X ′

)
are coarsely equivalent if there exists a family of uniform coarse

equivalences (X, δtS) ∼ (X ′, δtS′) for every t ≥ 1.
This notion of coarse equivalence is usually too strong for us, especially because

we will also be interested in comparing warped system with (countable) sequences of
metric spaces. We thus introduce a weaker notion of coarse equivalence:

Definition 8.2.3. Let
(
Xi, dXi

)
i∈I and

(
Yj, dYj

)
j∈J be two families of metric spaces

indexed over some directed poset (I,≤) and (J,≤). We say that they are coarsely
sub-equivalent if there exist cofinal sequences1 (in)n∈N ⊆ I and (jn)n∈N ⊆ J such
that the sequences of metric spaces

(
Xin , dXin

)
n∈N and

(
Yjn , dYjn

)
n∈N are coarsely

equivalent.
If two families of metric spaces are not coarsely sub-equivalent, we say that they

are coarsely disjoint.2

Remark 8.2.4. Note that the relation of coarse sub-equivalence is not an equivalence
relation, as it need not be transitive.

In our settings, two warped systems WSys
(
FS y X

)
and WSys

(
FS′ y X ′

)
are

coarsely sub-equivalent if there exist two unbounded sequences tn → ∞, sn → ∞
such that (X, δtnS ) ∼ (X ′, δsnS′ ) uniformly on n. A warped system WSys

(
FS y X

)

is coarsely sub-equivalent to a sequence of metric spaces
(
Yn, dYn

)
n∈N if there is an

unbounded sequence tn →∞ such that (X, δtnΓ ) is coarsely equivalent to a subsequence
of
(
Yn, dYn

)
n∈N.

8.2.2 Warped systems and level sets

Let (X, d) be a metric space with diam(X) ≤ 2, Γ = 〈S〉 a finitely generated group
acting on X by homeomorphisms and OΓ(X) the associated warped cone. Then for
every t ≥ 1 the metric space (X, δtS) is isometric to the level set X × {t} ⊂ OΓ(X)

(with the subset metric). That is, the warped system coincides with the family of
level sets of the warped cone together with the extra piece of information about the
generating set.

1The sequence (in)n∈N is cofinal in (I,≤) if in ≤ im for every n ≤ m and for every j ∈ I there
exists an n ∈ N such that j ≤ in.

2This definition agrees with the notion of coarse disjointness given in [FNvL17].

150



Note that if M is a compact manifold with diam(M) > 2, Lemmata 8.1.10
and 8.1.5 still imply directly that (X, δtS) is bi-Lipschitz equivalent to the level set
M × {t} ⊂ OΓ(M) (while one would need to rescale the metric first in order to talk
about the warped cone in the generalised sense).

If we are only interested on a warped system WSys
(
FS y X

)
up to bi-Lipschitz

equivalence and the set of homeomorphism S comes from an action of a non-free group
Γ, i.e. Γ = 〈S〉 and we are given an action Γ y X, then we will sometime use the
notation WSys

(
Γ y X

)
. We will do so especially when we want to prove that some

coarse geometric properties of the warped system depend on the group acting. This
is convention is equivalent to our standard convention for warped cones, where the
generating set is always dropped from the notation.

As a warning, we wish to remark that the notion of coarse equivalence for warped
cones and warped systems (a priori) differ. That is, if f : OΓ(X)→ OΛ(Y ) is a coarse
equivalence, we cannot immediately deduce that the warped systems WSys

(
Γ y X

)

and WSys
(
Λ y Y

)
are coarsely equivalent because we are not given that f sends

level sets near (corresponding) level sets. Vice versa, even if we know that two warped
systems WSys

(
Γ y X

)
and WSys

(
Λ y Y

)
are coarsely equivalent we cannot trivially

deduce that the warped cones OΓ(X) and OΛ(Y ) are coarsely equivalent because it
might be the case that the family of coarse equivalences between level sets are not
compatible and do not glue nicely.

This inequivalence is one of the reason why we decided to introduce the notion of
warped systems. Indeed, most of our results concern mainly the geometry of the level
sets, which made it artificial to maintain the whole cone as a metric space.

Remark 8.2.5. What is obvious is that a fixed map f : X → Y induces a coarse
equivalence of warped systems if and only if the trivial extension f × id : X× [1,∞)→
Y × [1,∞) is a coarse equivalence.3

8.2.3 Warped systems and approximating graphs

We will now link warped systems on manifolds with (topology) approximating graphs.
Most of what follows is also be true for more general metric spaces where Voronoi
tiles and nets are sufficiently well-behaved. We will now use the material from
Subsection 2.6.2.

Let (M,d) be a compact Riemannian manifold and S a finite set of homeomor-
phisms. For every t ≥ 1, let Yt ⊂ (M, δtΓ) be a 1

3
-net and let Xt := VR(2, Yt) be the

3It is interesting to note that if f is known to be a homeomorphism and it induces a coarse-equiv-
alence then it must conjugate the two actions [Saw17b].
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associated Vietoris-Rips graph (i.e. with edges between points of Yt with warped
distance less than 2). By Lemma 2.6.6, we deduce that the inclusion Yt ⊂M induces
a (3, 1)-quasi-isometry4 between the graph Xt and (M, δtS) for every t ≥ 1.

Now, consider the Voronoi tessellation V(Yt) of the manifold (M,d) associated
with the subset Yt, and the induced topology approximating graph G̃

(
FS yM ;V(Yt)

)
.

Note that the Vietoris-Rips graph Xt and the approximating graph G̃
(
FS yM ;V(Yt)

)

have the same vertex set; the next lemma shows that this natural identification is a
coarse-equivalence.

Lemma 8.2.6. For every t ≥ 1 the topology approximating graph G̃
(
FS yM ;V(Yt)

)

is contained in the graph Xt and the inclusion is a (L,A)-quasi-isometry where the
constants L and A depend only on the geometry of M .

Proof. If (y, y′) is an edge in G̃
(
FS yM ;V(Yt)

)
, by definition there must exist an

element x ∈ X such that x ∈ R(y) and s · x ∈ R(y′) for some s ∈ S±e . Then we have

δtΓ(y, y′) ≤ δtΓ(y, x) + δtΓ(x, s · x) + δtΓ(s · x, y′) ≤ 1

3
+ 1 +

1

3
< 2

thus (y, y′) is also an edge of Xt.
Conversely, if δtΓ(y, y′) < 2 then either we also have dt(y, y′) < 2 or there exists a

point x ∈ X with dt(y, x) < 1 and dt(s · x, y′) < 1. It is hence enough to bound the
distance in G̃

(
FS yM ;V(Yt)

)
of two vertices y, y′ with dt(y, y′) < 2.

Picking a geodesic path γ in (M,dt) between y and y′ we can define a sequence of
vertices y = y0, y1, . . . , yn = y′ by keeping track of which regions of V(Yt) are traversed
by γ. Then each couple (yi, yi+1) is an edge of G̃

(
FS yM ;V(Yt)

)
. We can bound

n using the geometry of M because all the regions R(yi) are contained in a ball of
radius 3 of (M,dt) and thus one can obtain the required uniform bound using volume
estimate techniques (as in the proof of Lemma 2.3.14).

This simple lemma is actually a pivotal point of this manuscript. Indeed, we now
have a complete correspondence between (topology) approximating graphs and warped
systems. This is a very useful asset, because the first are rather simple to study from a
dynamical point of view, while the latter have some clearly defined geometric structure
for one to work with.

We can now join the results of this chapter with those of Chapters 5 and 7 (recall
that a family of metric expanders is a family of metric spaces uniformly coarsely
equivalent to expanders).

4One can check that in this case it actually is a (2, 1)-quasi-isometry
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Theorem 8.2.7. Let S be a finite set of quasi-symmetric homeomorphisms with
bounded measure distortion on a compact Riemannian manifold (M,%). Then the
following are equivalent:

(i) the warped system WSys
(
FS yM

)
is a family of metric expanders;

(ii) the warped system is coarsely sub-equivalent to a sequence of expanders;

(iii) the action FS y M is expanding in measure with respect to the Riemannian
volume.

Proof. (i)⇒(ii) is obvious. To prove (ii)⇒(iii), first note that the topology approxi-
mating graphs G̃

(
FS yM ;V(Yt)

)
have uniformly bounded degrees by Proposition 5.3.2

(the full argument is given in the proof of Theorem 7.1.3). Assume that Gn is a sequence
of expanders that is coarsely equivalent to a subsequence (M, δtnS ) with tn →∞. Then,
by Lemma 2.7.5, the topology approximating graphs G̃

(
FS yM ;V(Ytn)

)
must be a

sequence of expanders as well. We are hence under the hypotheses of Theorem 7.1.3
and thus we deduce that the action FS yM is expanding in measure.

Finally, since we already remarked that the topology approximating graphs have
uniformly bounded degrees and are uniformly quasi isometric to the spaces (M, δtS),
to prove (iii)⇒(i) it is enough to apply Lemma 5.2.3 for every t ≥ 1.

Corollary 8.2.8. If an action FS y M as in Theorem 8.2.7 is also measure-pre-
serving, then (i), (ii) and (iii) are equivalent to the action FS yM having spectral
gap.

Corollary 8.2.9. Let G be a compact Lie group and let Γ = 〈S〉 where S ⊆ G

is a finite subset. Choose any Riemannian metric on G. Then the warped system
WSys

(
Γ y G

)
is a family of metric expanders if and only if S is a Kazhdan set of G.

Proof. If the volume form induced by the Riemannian metric coincides with the Haar
measure then the statement follows from Theorem 8.2.7 and Corollary 6.2.11. Any
other Riemannian volume form equals f(x)ν(x) for some strictly positive smooth
function f . Since G is a compact, there are constants 0 < c < C so that c < f(x) < C

∀x ∈ G and it follows that Γ y G is expanding in measure with respect to ν if and
only if it is expanding in measure with respect to f(x)ν(x).

Alternatively, it follows from Corollary 8.1.6 that choosing a different Riemannian
metric on G produces a coarsely equivalent warped system. The statement follows
from the case where the volume coincides with the Haar measure because the definition
of metric expanders is rigid under coarse equivalences.
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Since warped systems are (families of spaces) coarsely equivalent to level sets of
warped cones, applying Theorem 2.7.9 and Proposition 5.4.3 we obtain the following:5

Corollary 8.2.10. If an action FS yM as in Theorem 8.2.7 is expanding in measure,
then the warped cone OFS(M) does not coarsely embed into any Lp space.

Moreover, if the action is measure preserving and it has E-spectral gap for a
Banach space E then OFS(M) does not coarsely embed into E.

Note in particular that we can produce examples of warped cones arising from
the action by left multiplication Γ y G of a subgroup Γ of a compact Lie group G
that do not coarsely embed into Hilbert spaces even if the warping group Γ has the
Haagerup property (e.g. any F2 < SU(2,C) with spectral gap). Before [NS17], this
used to be an open question attributed to Roe himself.6

8.3 Local rigidity

We now wish to study the coarse geometry of warped systems/approximating graphs.
The first reason for doing so is to show that the expanders that we can construct using
this machinery are something really new and not just a light modification of some
previously known examples.

Secondly, we will be able to prove some coarse geometric rigidity results that will
allow us to prove that we can construct many inequivalent families of expanders.

It is also conceivable that some of the results concerning the coarse geometry of
warped cones turn out to be helpful as invariants to study properties of dynamical
actions.

In this section we will be concerned with geometric information coming from the
local structure of warped cones over manifolds. For doing this, we will have to restrict
to actions by isometries.

5Corollary 8.2.10 was independently proved in [NS17].
6It is folklore to attribute this question to J. Roe, as he proved in [Roe05] that if a warped cone

warped cone arising from the action by multiplication of a subgroup Γ of a compact Lie group coarsely
embed into a Hilbert space then Γ must have the Haagerup property. Still, we could not find this
question written anywhere. Chances are that it was asked in private communication.
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8.3.1 Local geometry of warped systems by isometries

Let Γ y M be an action by isometries on a Riemannian manifold and S a fixed
generating set of Γ. In particular, Γ is equipped with the induced right7 word metric
| · | and left and right Cayley graphs (Subsection 2.2.3). These are fixed, because so is
the generating set. To lighten the notation, in what follows we will denote the ball
B(Γ,|·|)(e, r) ⊂ Γ simply by BΓ(r).

Following our convention, for every subset Y ⊆ M we denote by BΓ(r) · Y the
union of the images of Y under the elements in BΓ(r):

BΓ(r) · Y :=
⋃
{γ · Y | γ ∈ Γ, |γ| < r}.

We define the set χtΓ(r) ⊂M as follows:

χtΓ(r) :=
{
x ∈M

∣∣∣ ∃γ ∈ Γ, |γ| ≤ 6r such that d(x, γ · x) ≤ 6r

t

}
.

That is, χtΓ(r) is the set of points that are ‘almost fixed’ (up to an error of the order
of r/t) by some element of Γ of length at most 6r.

The rationale for defining χtΓ(r) comes from the fact that we already know that
for every point x ∈ M the orbit map γ 7→ γ(x) induces a 1-Lipschitz embedding of
the right Cayley graph Cayr(Γ, S) to (M, δtΓ) for every t. Moreover, if x has trivial
stabilizer, we expect that this embedding Cayr(Γ, S) ↪→ (M, δtΓ) tends to be a (locally)
bi-Lipschitz embedding when t goes to infinity. In order to prove this, one needs some
control on the neighbourhoods of a fixed radius r in the warped system. Since the
action is by isometries, the warped distance between two points x, y ∈ (X, δtΓ) can be
expressed as

δtΓ(x, y) = inf
γ∈Γ

[
dt(x, γ · y) + |γ|

]
= inf

γ∈Γ

[
td(x, γ · y) + |γ|

]
(8.2)

(Lemma 2.2.7), and thus we have the following inclusion of neighbourhoods:

N(M,δtΓ)(Y, r) ⊆ BΓ(r) ·N(M,d)

(
Y,
r

t

)
= N(M,d)

(
BΓ(r) · Y , r

t

)
.

In particular, the set χtΓ(r) contains the set of ‘bad points’ of M whose neighbourhood
of radius r with respect to the warped metric δtΓ could self-intersect in unexpected
ways (the number 6 appears for technical reasons).

We can now (asymptotically) characterise balls in warped systems over isometric
actions up to bi-Lipschitz equivalence. Equip the direct product Γ× Ek is with the
`1-distance (i.e. defined by d

(
(γ1, v1), (γ2, v2)

)
:=
∣∣γ1γ

−1
2

∣∣+ ‖v1 − v2‖2). Then we have
the following:8

7We generally prefer to use the left word metric, but all the results of this section are natural to
state in the right word metric.

8Similar observations were made in [SW17, Lemma 3.8].
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Lemma 8.3.1. Let L > 1 and r > 0 be fixed and Γ y M an action by isometries.
Then there exists a t0 large enough so that for every t ≥ t0 and for every x0 /∈ χtΓ(r),
the ball B(M,δtΓ)(x0, r) is L-bi-Lipschitz equivalent to the ball of radius r in the product
Γ× Edim(M).

In particular, for any point x /∈ χtΓ(r) for some t ∈ R, the ball of radius r around
x in the warped system WSys(Γ yM) is asymptotically L-bi-Lipschitz to the r-ball
in Γ× Edim(M).

Proof. Fix t > 1 and x0 /∈ χtΓ(r). By definition of χtΓ(r), it follows that the balls
B(M,dt)(γ ·x0, 3r) with γ ∈ BΓ(3r) are disjoint. In fact, we already noted that the image
γ ·B(M,dt)(x0, 3r) coincides with the ball B(M,dt)(γ ·x0, 3r). Thus, if two balls B(M,dt)(γ1 ·
x0, 3r) and B(M,dt)(γ2 ·x0, 3r) intersect, then B(M,dt)(x0, 3r)∩γ−1

1 γ2 ·B(M,dt)(x0, 3r) 6= ∅
and hence dt(x0, γ

−1
1 γ2(x0)) ≤ 6r.

Since M is compact, the infimum in the equality (8.2) is actually a minimum.
Therefore, for every two points x, y ∈ B(M,δtΓ)(x0, r), there exist γx, γy ∈ BΓ(r) so that
δtΓ(x, x0) = |γx| + dt(γx · x0, x) and δtΓ(y, x0) = |γy| + dt(γy · x0, y). Again by (8.2),
there exists a γ ∈ Γ with |γ| ≤ 2r so that

2r ≥ δtΓ(x, y) = |γ|+ dt(γ · x, y).

It follows that the point y belongs to both γγx ·B(M,dt)(x0, 3r) and γy ·B(M,dt)(x0, r)

and therefore, by construction, we must have γ = γyγ
−1
x .

As a consequence, we deduce that the ball of radius r centred at x0 in (M, δtΓ)

is actually isometric to the ball of radius r centred at (x0, e) in the direct product
Γ× (M,dt) equipped with the `1-distance. In fact, consider the map φ : Γ× (M,dt)→
M defined by (γ, z) 7→ γ(z). For every pair (γ, z) ∈ BΓ×(M,dt)

(
(e, x0), r

)
we have

δtΓ(x0, γ(z)) ≤ |γ|+ dt(γ(x0), γ(z)) ≤ r so that φ sends the relevant ball into the right
ball. Vice versa, given x ∈ B(M,δtΓ)(x0, r), we deduce as that there exists a unique
γx ∈ BΓ(r) such that x ∈ γx · B(M,dt)(x0, r) and hence letting z = γ−1(x) we have
x = φ(γx, z). We thus obtained a bijection, and from the preceding paragraph we
deduce that for any two points (γx, zx), (γy, zy) ∈ Γ× (B, dt) we have

δtΓ
(
φ(γx, zx), φ(γy, zy)

)
=
∣∣γyγ−1

x

∣∣+ dt
(
γyγ

−1
x · γx(zx), γy(zy)

)
=
∣∣γyγ−1

x

∣∣+ dt(zx, zy)

and the latter is precisely the `1-distance that we are working with (i.e. using the
right word metric).

The statement of the lemma thus reduces to proving that BΓ×(M,dt)

(
(e, x0), r

)
is

L-bi-Lipschitz equivalent to BΓ×Edim(M)

(
(e, 0), r

)
for t large enough. Since in both
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cases we are considering the `1-distance on the product, it is enough to prove that
B(M,dt)(x0, r) and BEdim(M)(0, r) are L-bi-Lipschitz equivalent.

Note that the ball B(M,dt)(x0, r) is isometric to the ball B(M,d)(x0,
r
t
) with the metric

rescaled by t, and similarly we have that BEdim(M)(0, r) is isometric to BEdim(M)(0, rt )

with the metric rescaled by t. Rescaling by t on both sides it is hence enough to show
that there is a bi-Lipschitz equivalence between BEdim(M)(0, rt ) and B(M,d)(x0,

r
t
) when

t is large enough. This equivalence is given to us by the Riemannian exponential
(Corollary 2.3.9).

Lemma 8.3.1 completely describes the local structure of warped systems outside
from a set of ‘bad points’. This will be used in the next section to prove a coarse
rigidity result, but before doing that we will have to show that if the set of bad points
of M is small and WSys(Γ y M) is coarsely sub-equivalent to WSys(Λ y N) then
the coarse equivalences will send the set of bad points to small sets.

More precisely, recall that an action on a measure space is essentially free if the
set of points with nontrivial stabilizer has measure zero. Then we prove the following:

Lemma 8.3.2. Let Γ yM and Λ y N be essentially free actions by isometries on
compact Riemannian manifolds and let L,A, r > 0 be fixed. If there exist increasing
unbounded sequences (tk)k∈N and (sk)k∈N, and (L,A)-quasi-isometries fk : (M, δtkΓ )→
(N, δskΛ ), then for every k large enough, there exists a point xk ∈ M \ χtkΓ (r) whose
image fk(xk) is not in χskΛ (r).

Proof. The rough idea is to show that, since the action is essentially free, the measure
of both χtkΓ (r) (and its image) and χskΛ (r) tends to 0 as k goes to infinity. This would be
easy to do if the maps fk were nice and regular, but since they are only quasi-isometries
we will have to work a bit harder to control the size of the image of χtkΓ (r).

Without loss of generality, we renormalize the Riemannian metrics so that M and
N have volume 1. Let Yk ⊂ (M, δtkΓ ) be an L(A+ 1)-net subset. Note that the balls
B

(M,δ
tk
Γ )

(
y, LA+1

2

)
with y ∈ Yk are disjoint, and (in the notation of Subsection 2.3.3)

they have volume bounded between vM
(
LA+1

2tk

)
and VM

(
LA+1

2tk

)
|BΓ(LA+1

2
)|.

Let Zk ⊆ Yk be the subset of those points which are close to χtkΓ (r):

Zk :=
{
y ∈ Yk

∣∣∣ δtkΓ
(
y, χtkΓ (r)

)
< L(A+ 1)

}
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and let Ωk := N
(M,δ

tk
Γ )

(
Zk, L(A + 1)

)
. Then χtkΓ (r) is contained in Ωk and Ωk is

contained in a “small” neighbourhood of χtkΓ (r):

Ωk ⊆ N
(M,δ

tk
Γ )

(
χtkΓ (r), 2L(A+ 1)

)
⊆ BΓ(2L(A+ 1)) ·N(M,d)

(
χtkΓ (r), 2L

A+ 1

tk

)
.

Note that the measure of the right-hand side tends to 0 as k tends to infinity, because
the sets χtkΓ (r) form a sequence of closed nested subsets that converge (in measure) to
the union of the sets of fixed points of finitely many elements of Γ.

Combining the two inequalities

|Zk|vM
(
L
A+ 1

2tk

)
≤ Vol(Ωk)→ 0,

|Yk||BΓ(L(A+ 1))|VM
(
L
A+ 1

tk

)
≥ Vol(M) = 1

with with the uniform bound on volumes of balls of small radii (Lemma 2.3.14), we
obtain that the ratios |Zk|/|Yk| tend to 0 as k goes to infinity.

Now, since fk is an (L,A)-quasi-isometry, the image fk(Yk) is a 1-separated
(L2(A+ 1) + 2A)-dense subset of (N, δskΛ ) (see Lemma 2.6.3) and we also have

fk
(
χtkΓ (r)

)
⊆ fk(Ωk) ⊆ N(N,δ

sk
Λ )

(
fk(Zk), L

2(A+ 1) + A
)
.

We deduce that the volume of (a neighbourhood of) fk(Ωk) is bounded above by

VN

(L2(A+ 1) + A

sk

)
|BΛ(L2(A+ 1) + A)||Zk|. (8.3)

On the other hand, 1-separatedness gives us an upper bound on |Yk| in terms of
vN :

|Yk|vN
( 1

2sk

)
≤ Vol(N) = 1. (8.4)

Since |Zk|/|Yk| tends to 0 as k tends to infinity, combining the estimates (8.3) and
(8.4) and applying once more Lemma 2.3.14 implies that also the measure of (a
neighbourhood of) fk(Ωk) tends to 0. As we also have that the volume of χskΛ (r) ⊆ N

tends to 0, the statement of the lemma follows trivially.

8.3.2 Stable rigidity for warped systems

We can now prove the quasi-isometric rigidity result (see Subsection 2.8.2 for the
definition of filtrations and box spaces). The following theorem is inspired by [KV17,
Theorem 7]
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Theorem 8.3.3. Let Γ y (M,d) be an essentially free action by isometries on a
compact Riemannian manifold and Λ a group generated by a finite set S ′.

(i) If Λ acts essentially freely by isometries on a compact Riemannian manifold
N and the warped systems WSys(Γ y M) and WSys(Λ y N) are coarsely
sub-equivalent, then Λ× Zdim(N) is quasi-isometric to Γ× Zdim(M).

(ii) If there exists a normal residual filtration (Λk)k∈N of Λ so that the box space
�(Λk)Λ is coarsely sub-equivalent to WSys(Γ y M), then Λ is quasi-isometric
to Γ× Zdim(M).

Proof. Consider the first assertion. Suppose that (tk)k∈N and (sk)k∈N are increasing
unbounded sequences such that the levels (M, δtkΓ ) and (N, δskΛ ) are uniformly coarsely
equivalent. Then there exists a sequence of quasi-isometries fk : (M, δtkΓ )→ (N, δskΛ )

that are all (L,A)-quasi-isometries for some fixed constants L and A. In particular,
by Lemma 2.6.3 they are (L,A)-quasi-isometric embeddings with A-dense image.

Fix an integer radius r ∈ N. By Lemma 8.3.2, for every k large enough there exists
a point xk ∈M \ χtkΓ (r) such that fk(xk) is not in χskΛ (r). Let yk := fk(xk). Fix ε > 0

small. By Lemma 8.3.1, we also have that there exists a k = k(r) large enough so that
the balls B

(M,δ
tk
Γ )

(xk(r), r) and B(N,δ
sk
Λ )(yk(r), Lr+A) are (1 + ε)-bi-Lipschitz equivalent

to BΓ×Em(r) and BΛ×En(Lr + A) respectively, where m = dim(M) and n = dim(N).
Note that the inclusion Zd ↪→ Ed is a (

√
d,
√
d)-quasi-isometry and that the restric-

tion of fk to B(M,δ
tk
Γ )

(xk, r) is an (L,A)-quasi-isometric embedding into B(N,δ
sk
Λ )(yk, Lr+

A). We then have a concatenation of quasi-isometric embeddings as depicted in the
following diagram:

BΓ×Zm(r) BΓ×Em(r) B
(M,δ

tk
Γ )

(xk(r), r)

BΛ×Zn
(√

n(Lr + A+ 1)
)

BΛ×En(Lr + A) B(N,δ
sk
Λ )(yk(r), Lr + A),

(
√
m,
√
m) (1 + ε, 0)

(
√
n,
√
n) (1 + ε, 0)

fk(r)f̂r

where f̂r is defined as the composition and the labels represent the quasi-isometry
constants. Then f̂r is a (L′, A′)-quasi-isometric embedding where L′ =

√
nmL and

A′ =
√
n(
√
mL+ A+ 1) (if the ε coming from the bi-Lipschitz map is small enough,

we can ignore it altogether because the distances in Γ× Zm and Λ× Zn take integer
values).

159



We thus obtained a sequence of uniform quasi-isometric embeddings f̂r. Note that,
by construction, f̂r sends the identity element of Γ× Zm to the identity element of
Λ × Zn. It follows that for every fixed vertex v ∈ Γ, the image f̂r(v) can only take
finitely many values in Λ × Zn and hence there exists a subsequence f̂rl such that
f̂rl(v) is constant.

Using a diagonal argument, we can further pass to a subsequence f̂ri such that for
every i > j the restriction of f̂ri to the ball BΓ×Zm(j) coincides with f̂rj . It follows
that setting f̂ |BΓ×Zm (i) := f̂ri gives a well-defined (L′, A′)-quasi-isometric embedding
f̂ : Γ× Zm → Λ× Zn.

By Lemma 2.6.3, it only remains to show that f̂ is coarsely surjective. This is
easily done, because if g is any quasi-isometry and R is any radius, then there exists
an R′ ≥ R large enough so that the image g

(
B(x,R′)

)
is coarsely dense in B

(
g(x), R

)
.

As f̂r is defined as a composition of (restrictions of) quasi-isometries, it follows that
for every R > 0 the image of f̂r is coarsely dense in BΛ×Zn(R) for every r large enough
and therefore the same holds true for f̂ .

The proof of (ii) follows the same lines. Indeed, assume that there exist uniform
(L,A)-quasi-isometries fk : (M, δtkS ) → Cay(Λ/Λk, S

′) for some sequence tk → ∞.
Since the normal subgroups Λk are a nested sequence with trivial intersection, for
every r ∈ N there is a k = k(r) large enough so that the ball of radius Lr + A in the
Cayley graph Cay(Λ/Λk, S

′) and the ball of radius Lr+A in Cay(Λ, S ′) are isometric.
One can hence fix some points xk ∈M \ χtkΓ (r) and consider the diagram

BΓ×Zm(r) BΓ×Em(r) B
(M,δ

tk
Γ )

(xk(r), r)

BΛ(Lr + A) BΛk\Λ(Lr + A)

(
√
m,
√
m) (1 + ε, 0)

∼=

fk(r)f̂r

and argue as above.

Remark 8.3.4. For the proof of (ii) of Theorem 8.3.3 we needed to restrict to normal
subgroups Λk C Λ because for non-normal subgroups it is not in general true that
balls of radius Lr + A in the Schreier graphs Schr(Λk\Λ, S ′) are isometric to the ball
of radius Lr + A in Cay(Λ, S ′) for large k. Still, it is true that for large k the ball of
radius Lr +A centred on the coset Λk ∈ Λk\Λ in the Schreier graph Schr(Λk\Λ, S ′) is
isometric to the ball of radius Lr + A in Cay(Λ, S ′). One can easily modify the proof
of (ii) to prove the analogous statement in the case of non-normal residual nested
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box spaces assuming that χtkΓ (r) be empty for large k (i.e. assuming that the action
Γ yM be free).

8.3.3 First examples of coarsely disjoint superexpanders

Theorem 8.3.3 is already enough to prove that some classes of examples that we
constructed are coarsely disjoint (i.e. they are not coarsely sub-equivalent). Still, to
do so one needs to employ quasi-isometric rigidity results for groups in order them to
distinquish groups up to stabilisation by Zn.

As an example, it follows from the Splitting Theorem in [KL97] (see also [KKL98])
that if Γ and Λ are cocompact lattices in a semisimple algebraic group with no
rank-one simple factors and Γ× Zm is quasi-isometric to Λ× Zn, then m = n and Γ

is quasi-isometric to Λ. Note in particular that the Splitting Theorem applies to the
group Γd = SO(d,Z[1

5
]) with d ≥ 5 (Section 6.3).

Then Theorems 8.3.3 and 8.2.7 imply the following:

Corollary 8.3.5. The metric superexpanders WSys(Γd y SO(d,R)) and WSys(Γd′ y
SO(d′,R)) (see Definition 2.7.6 and Corollary 7.1.6) are coarsely disjoint if d 6= d′.
Moreover, the metric superexpanders WSys(Γd y SO(d,R)) and WSys(Γd y Sd−1)

(with the same d) are also coarsely disjoint.

The class of cocompact lattices in a semisimple algebraic group over a non-
Archimedean local field, in which every simple factor is of higher rank, is quasi-
isometrically rigid [KL97] (see also [EF97]). It then follows from Theorem 8.3.3
that any normal residual nested box space of such a group Λ cannot be coarsely
sub-equivalent to any warped system WSys(Γ yM) (where the action is essentially
free and by isometries on a compact manifold). Indeed, if there existed a normal
residual nested box space �(Λk)Λ that is coarsely sub-equivalent to WSys(Γ y M)

then Theorem 8.3.3 would imply that Γ × Zd is quasi isometric to Λ and, by the
quasi-isometrc rigidity, we would deduce that Γ × Zd must be a group of the same
sort (cocompact lattice with higher rank factors etc.). In particular, Γ× Zd should
have Kazhdan’s property (T), which it clearly does not. This implies the following
theorem.

Theorem 8.3.6. If Γ is a group with Lafforgue strong Banach property (T) with an
ergodic essentially free action by isometries on a compact Riemannian manifold M ,
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then the warped system WSys(Γ yM) is a metric superexpander that is not coarsely
sub-equivalent to a Lafforgue expander (Definition 2.8.5).9

Remark 8.3.7. In Corollary 8.3.5 we used Theorem 8.3.3 to show that some families
of (metric) superexpanders are not coarsely sub-equivalent. Still, we actually know
something more i.e. that they are not even “locally” coarsely sub-equivalent. For
instance, if we assume the actions to be free we can avoid using Lemma 8.3.2 and then
the proof of Theorem 8.3.3.(i) works verbatim with the following (weaker) assumptions:
there exist sequences of points (xk)k∈N in M and (yk)k∈N in N , increasing unbounded
sequences tk →∞ and sk →∞, and neighbourhoods Ak ⊂ (M, δtkΓ ) and Bk ⊂ (N, δskΛ )

of xk and yk, respectively, such that Ak and Bk are uniformly quasi-isometric and
for every r > 0 there exists a k large enough so that the balls B

(M,δ
tk
Γ )

(xk, r) and
B(N,δ

sk
Λ )(yk, r) are contained in Ak and Bk, respectively.

8.4 Discrete fundamental groups of warped systems

We will now turn towards more global coarse invariants of warped systems. In
particular, we want to study their discrete fundamental groups (Section 3.1). Our
main tools will come from specialising to warped systems the general results obtained
in Chapter 4. For this reason, in this section we will restrict our attention to a metric
space X that has homotopy rectifiable paths and, for our main result, we will also
need to assume that X is compact.

8.4.1 Computing the discrete fundamental group

Let FS y (X, d) be a continuous action and recall that δtS denotes the rescaled metric
dt on X warped by FS. Note that if X is compact and (X, δt0S ) is jumping-geodesic,
then also (X, δtS) is jumping-geodesic for every t > t0 (in particular, the warped system
is asymptotically jumping-geodesic). Indeed, by compactness, for every x, x′ ∈ X

there exist y1, . . . , yn ∈ X and ~s1 . . . ~sn ∈ S t S−1 so that

δtS(x, x′) = dt(x, y1) + 1 + dt
(
~s1(y1), y2

)
+ 1 + · · ·+ dt

(
~sn(yn), x′

)

(Lemma 2.2.5). We also know that between x and y1 there is a jumping-geodesic in
(X, δt0S ). Note that this jumping-geodesic cannot have any jump, otherwise performing
the same jump on the level t we would obtain a path between x and y1 that is strictly

9In our definition of Lafforgue expanders we insist that the filtration be normal. Still, if the action
Γ yM is free, we can deduce that WSys(Γ yM) is not even coarsely subequivalent to non-normal
Lafforgue expanders (see Remark 8.3.4).
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shorter than dt(x, y1). We deduce that the jumping-geodesic between x and y1 (in the
level t0) is actually a continuous path and it is hence a continuous geodesic in (X, d)

(and (X, dt)). The same argument holds for all the other pairs of points (yn, yn+1),
and gluing together these continuous paths we obtain the required jumping-geodesic
between x and x′ in (X, δtS).

Let Ellθ :=
{
w ∈ FS

∣∣ |w| ≤ 4θ, Fix(w) 6= ∅
}
be the set of elliptic elements (i.e.

elements with fixed points) of length at most 4θ (in general this set is not closed under
conjugation because of the condition |w| ≤ 4θ). Note that if y ∈ X is a fixed point of
w and β is a continuous path joining x0 to y, then αww(β)β∗ is a closed loop in X.

Theorem 8.4.1. Let X be compact, (X, δS) asymptotic jumping-geodesic and fix
θ ∈ N. Then there exists a t0 large enough so that for every t ≥ t0 and w ∈ FS there
exists a path γ so that ([γ], w) ∈ ker

(
Φ̂S : π1(X)oφS FS → π1,θ(X, δ

t
S)
)
if and only if

w ∈ ⟪Ellθ⟫.
Moreover, if X is semi-locally simply connected we can choose t0 large enough so

that for every t ≥ t0 we have

π1,θ

(
(X, δtS), x0

) ∼=
(
π1(X, x0)oφS FS

)/⟪Kθ⟫
where

Kθ :=
{(

[βw(β∗)α∗w], w
) ∣∣ w ∈ Ellθ, β(0) = x0, β(1) ∈ Fix(w)

}
.

Proof. Following the proof of Lemma 4.3.1 it is easy to see that Kθ ⊆ ker Φ̂S for t
large enough. Therefore, for every w ∈ ⟪Ellθ⟫ we have explicitly exhibited the required
path γ so that ([γ], w) is in the kernel.

We now prove the converse. First of all, in the sequel we always assume that t0 is
large enough so that (X, δt0S ) is jumping-geodesic (we will not mention this anymore).

Given a word w = ~s1 · · ·~s|w|, a point x ∈ X and a radius r ≥ 0, we define a
sequence of sets as follows: C(0)

w (x, r) is the ball B(x, r) in (X, d) and for 1 ≤ i ≤ |w|
we let

C(i)
w (x, r) := Nr

(
~si
(
C(i−1)
w (x, r)

))

where Nr is the neighbourhood of radius r with respect to the distance d. Finally, let
Cw(x, r) := C

(|w|)
w (x, r).

Note that as r tends to zero, the set C(i)
w (x, r) converges to the single point

~si · · ·~s1(x) and in particular Cw(x, r) converges to wrev(x). By compactness, if wrev

does not have fixed points there exists a radius rw > 0 so that x /∈ Cw(x, r) for every
x ∈ X and r ≤ rw. We let

t0 := max

{
4θ

rw

∣∣∣∣ |w| ≤ 4θ, Fix(wrev) = ∅
}
∪ {1}.
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~s1(y)~s1(y) ~s2~s1(y)y

γ0

γ1
γ2~s1

~s2

C
(0)

w′−1
rev

(
y, 4θ

t

) C
(1)

w′−1
rev

(
y, 4θ

t

) C
(2)

w′−1
rev

(
y, 4θ

t

)

Figure 8.1: The jumping-path ~γ ′ is contained in the sets C(i)

w′−1
rev

(
y, 4θ

t

)
, where w′−1

rev is
the word ~s1 · · ·~sn.

Fix t ≥ t0. By Theorem 4.2.2, the kernel of the discretisation map is 〈FTθ〉; it is
therefore enough to show that if ΦS([γ], w) ∈ FTθ then w is conjugate to an element
of Ellθ.

Let ([γ], w) be such a pair and let ~γ = γψS(w) = γαw
w−1

rev x0. By hypothesis,
there exists a jumping-path ~γ ′ ∈ Tθ which is freely-homotopic to ~γ. Tracing the
base point under the free homotopy, we thus obtain a jumping-path ~β so that ~γ
is homotopic to ~β~γ ′~β∗. Choose a continuous path ξ going from x0 to ~γ ′(0) and
let ([γ′], w′) = Φ−1

S

(
ξ~γ ′ξ∗

)
, where we require that the word w′ matches exactly the

sequence of (inverses of) jumps in the path ~γ ′. Then |w′| ≤ 4θ and w′ is conjugated
to w, as ([γ], w) is conjugated to ([γ′], w′) by Φ−1

S (~βξ∗). To prove our claim it is hence
enough to show that w′ is in Ellθ i.e. that it has a fixed point in X.

Let ~γ ′ = γ0
~s1 · · · ~sn γn (so that w′ = ~s−1

1 · · ·~s−1
n ) and let y := γ0(0). It is easy to

show by induction that the image of γi is contained in C(i)

w′−1
rev

(
y, 4θ/t

)
(see Figure 8.1).

If w′ (and hence w′−1) did not have fixed points, by construction we would have
y /∈ Cw′−1

rev

(
y, 4θ/t

)
because 4θ/t ≤ rw′−1

rev
by definition. Still, ~γ ′ is closed and therefore

γn(1) = y is in Cw′−1
rev

(
y, 4θ/t

)
, a contradiction.

Assume now that X is semi-locally simply connected. Since it is compact, there
exists a constant ε > 0 small enough so that every path contained in a ball of radius ε is
homotopic in X to a constant path. Moreover, by compactness there exist ε′ ≥ ε′′ > 0

so that:

• for every w ∈ Ellθ and z ∈ Fix(w) we have w
(
B(z, ε′)

)
⊆ B(z, ε);

• any two points in B(x, ε′′) can be joined with a continuous path contained in
B(x, ε′) (recall that X is locally path connected).
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Finally, we can further enlarge t0 so that if w ∈ Ellθ then for every y ∈ X such that
y ∈ Cw−1

rev

(
y, 4θ/t0

)
there exists a z ∈ Fix(w) so that

Cw−1
rev

(
y,

4θ

t0

)
⊆ B(z, ε′′). (8.5)

Let again t ≥ t0 and ΦS([γ], w) ∈ FTθ and let ~γ ′, [γ′], w′, y and ξ be as above;
it will be enough to show that ([γ′], w′) ∈ Kθ. By the previous argument, we know
that w′ ∈ Ellθ, therefore we only need to understand the continuous part of ~γ ′. Note
also that we already know that y belongs to Cw−1

rev

(
y, 4θ/t0

)
because ~γ is a closed

jumping-path, and hence by (8.5) there exists a fixed point z ∈ Fix(w′) so that y is in
B(z, ε′′).

It follows from Lemma 4.1.7 that ~γ ′ is homotopic to γ′′ w
′−1
rev y, where γ′′ is an

appropriate continuous path that we can suppose to be completely contained in
w′−1

(
Cw′−1

rev

(
y, 4θ/t

))
. Note that the latter is in turn contained in w′−1

(
B(z, ε′′)

)
and

hence in B(z, ε).
By construction, there exists a continuous path η joining y to z with image contained

in B(z, ε′). Then both η, w′(η) and γ′′ are contained in B(z, ε) and therefore the closed
path (γ′′)∗ηw′(η∗) is null-homotopic. Note now that by definition

(
[ξηw′(η∗ξ∗)α∗w′ ], w

′)

is in Kθ (see Figure 8.2). Since we have

ΦS

(
[γ′], w′]

)
=
[
ξγ′′

w′−1
rev ξ∗

]

=
[
ξγ′′(γ′′)∗ηw′(η∗)

w′−1
rev ξ∗

]

=
[
ξηw′(η∗ξ∗)

w′−1
rev x0

]
= ΦS

(
[ξηw′(η∗ξ∗)α∗w′ ], w

′),

we can conclude that [γ′] = [αw′w
′(ξη)η∗ξ∗] because ΦS is injective.

The following is just a catchy restatement of the second part of Theorem 8.4.1:

Corollary 8.4.2. If X is compact and semi-locally simply connected and WSys
(
FS y

X
)
is asymptotically jumping-geodesic, then its θ-discrete fundamental group is asymp-

totically isomorphic to
(
π1(X, x0)oφS FS

)/⟪Kθ⟫.
In particular we are entitled to give the following:

Definition 8.4.3. The asymptotic θ-discrete fundamental group of an asymptotically
jumping-geodesic warped system WSys

(
FS y X

)
over a compact semi-locally simply

connected space X is the group:

π1,θ

(
FS y X, x0

)
:=
(
π1(X, x0)oφS FS

)/⟪Kθ⟫,
where Kθ :=

{(
[βw(β∗)α∗w], w

) ∣∣ w ∈ Ellθ, β(0) = x0, β(1) ∈ Fix(w)
}
.
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x0
αw′

w′(x0)

y
γ′′

w′(y)

ξ w′(ξ)

w′

η
z
w′(η)

Figure 8.2: Jumping paths in the kernel differ from elements of Kθ by short null-
homotopic paths

8.4.2 Some explicit computations

Theorem 8.4.1 immediately allows us to compute the discrete fundamental groups of
various warped systems. In particular we have the following:

Corollary 8.4.4. If FS acts by rotations on an even dimensional sphere S2n, then we
have π1,θ

(
(S2n, δtS), x0

)
= {0} for every t and θ ≥ 1.

Proof. The point is that every sphere is simply-connected, and every homeomorphism
of an even dimensional sphere has fixed points. Note that, to be precise, Theorem 8.4.1
only implies the statement asymptotically. To prove that the statement holds for
every t one should notice that this only requires the easy implication of Theorem 8.4.1
which can be deduced directly from Lemma 4.3.1.

Corollary 8.4.5. There exist coarsely simply-connected expanders and superexpanders.

Before doing more computations, note that—when specialised to warped sys-
tems—Proposition 4.3.8 yields a much sharper result than it does in the general case.
Indeed, let again Γ = 〈S | R〉 be a presentation of a (non necessarily finitely presented)
finitely generated group, and let Γθ be the finitely presented group 〈S | Rθ〉 where Rθ

is the subset of ⟪R⟫ of words of length at most 4θ. Then Theorem 8.4.1 implies the
following:

Corollary 8.4.6. Let X be compact and semi-locally simply connected and let Γ y X

be a free action of Γ = 〈S | R〉 so that FS y X is asymptotically jumping-geodesic.
Then

π1,θ

(
FS y X, x0

) ∼= π1(X)oφS FS

⟪{([α∗r ], r)
∣∣ r ∈ Rθ

}⟫ .
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Proof. An element of Kθ is of the form
(
[βw(β∗)α∗w], w

)
with w ∈ Ellθ, β(0) = x0 and

β(1) ∈ Fix(w). Since the action is free, Ellθ is equal to Rθ, and hence w = r ∈ Rθ.
Moreover, we have βw(β∗) = βr(β∗) = ββ∗ ∼ x0 and hence

(
[βw(β∗)α∗w], w

)
=(

[α∗r ], r
)
. The statement now follows from Theorem 8.4.1.

The proof of Proposition 4.3.8 immediately implies the following:

Corollary 8.4.7. Under the hypotheses of Corollary 8.4.6, there is a short exact
sequence

1→ ⟪[αr] | r ∈ Rθ⟫π1,θ(X,δS) → π1,θ

(
FS y X, x0

)
→

(
Gθ oφ̄ Γθ

)
→ 1,

where Gθ is the quotient

Gθ :=
π1(X, x0)

⟪{[αr]
∣∣ r ∈ ⟪Rθ⟫

}
∪
{

[αrγα∗rγ
−1]
∣∣ [γ] ∈ π1(X, x0), r ∈ ⟪Rθ⟫

}⟫ .

Corollary 8.4.8. Let Γ be finitely presented and θ large enough so that Γ = Γθ. If
Γ y X is as in Corollary 8.4.6 and the paths αr are null-homotopic ( e.g. if Γ = FS

or π1(X) = {e}), then

π1,θ

(
FS y X, x0

) ∼= π1(X, x0)oφ̄ Γ.

8.5 Global rigidity (via coarse fundamental groups)

We will now employ the discrete fundamental group of warped systems as an invariant
of coarse geometry. Since we want to use the tools of Section 8.4, we will work with
the following standing assumption:

Convention. From now on, we will always assume that WSys
(
FS y X

)
is an

asymptotically jumping-geodesic warped system over a compact, semi-locally simply
connected space X with homotopy rectifiable paths.

8.5.1 Limits of asymptotic discrete fundamental groups

Recall that from Lemma 3.1.4 we know that the identity map on X induces a surjection
π1,θ

(
FS y X

)
→ π1,θ′

(
FS y X

)
for every choice of θ < θ′. That is, the family of

asymptotic θ-discrete fundamental groups forms a direct system. We can hence take
the direct limit (Section 2.2.5) and define

π1,∞
(
FS y X

)
:= lim−→ π1,θ

(
FS y X

)
.
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Remark 8.5.1. Note that in the definition of π1,∞
(
FS y X

)
it is important that we

are taking the limit of asymptotic discrete fundamental groups for a family of metric
spaces. Indeed π1,∞

(
FS y X

)
is not the direct limit of the discrete fundamental

groups of a single metric space, as such a limit would always be trivial (every fixed
θ-path will become trivial if looked at with respect to a very large parameter θ′).10

Remark 8.5.2. Despite being inspired by it, the definition of π1,∞ is quite different
from the definition of coarse homology of [BCW14].

As a consequence of Theorem 8.4.1, we can easily prove the following:

Theorem 8.5.3. The limit group π1,∞
(
FS y X

)
is isomorphic to the quotient(

π1(X, x0)oφS FS
)/⟪K∞⟫ where

K∞ :=
{(

[βw(β∗)α∗w], w
) ∣∣ Fix(w) 6= ∅, β(0) = x0, β(1) ∈ Fix(w)

}
.

Proof. By Lemma 2.2.9, the direct limit of a nested sequence of quotients lim−→Γ/Γi

is isomorphic to Γ/Γ∞—where Γ∞ =
⋃
i Γi. Then, the proof of the theorem follows

easily from Theorem 8.4.1, as ⟪K∞⟫ =
⋃
θ>1⟪Kθ⟫.

The interest of Theorem 8.5.3 is that the group π1,∞
(
FS y X

)
can prove to

be a useful coarse invariant for WSys
(
FS y X

)
. For this we need to give another

definition:

Definition 8.5.4. We say that the warped system WSys
(
FS y X

)
has stable discrete

fundamental group if there exists a θ large enough so that the natural surjection
π1,θ

(
FS y X

)
→ π1,∞

(
FS y X

)
is an isomorphism.

It is simple to prove the following:

Lemma 8.5.5. If WSys
(
FS y X

)
is induced by a free action of a finitely generated

group Γ = 〈S | R〉, then it has stable discrete fundamental group if and only if Γ is
finitely presented.

Proof. As in Corollary 8.4.6, we let Rθ be the (finite) subset of ⟪R⟫ of words of length
at most 4θ. Then, since the Γ-action is free and every r ∈ ⟪R⟫ acts trivially, we
have Kθ =

{(
[α∗r], r

) ∣∣ r ∈ Rθ

}
and K∞ =

{(
[α∗r], r

) ∣∣ r ∈ ⟪R⟫}. In particular, if
⟪Kθ⟫ = ⟪K∞⟫ for some θ ∈ N, then ⟪R⟫ = ⟪Rθ⟫ and hence Γ is finitely presented.

10This is a very different situation from what happens when considering the inverse limit for θ → 0.
Compare with Section 3.2.
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Vice versa, if Γ is finitely presented then there exists a θ ∈ N such that ⟪Rθ⟫ = ⟪R⟫.
Following the lines of the proof of Proposition 4.3.8, we claim that K∞ is contained in
⟪Kθ⟫. Indeed, if ([α∗r ], r) is in ⟪Kθ⟫, then for every w ∈ FS we have

([α∗wrw−1 ], wrw−1) =
(
[w(r(α∗w−1)α∗r)α

∗
w], wrw−1

)

=
(
[αww(α∗r)α

∗
w], wrw−1

)

=
(
φS(w)[α∗r ], wrw

−1
)

= (e, w)([α∗r ], r)(e, w)−1

and hence ([α∗wrw−1 ], wrw−1) is in ⟪Kθ⟫ as well. Moreover, given ([α∗r1 ], r1) and
([α∗r2 ], r2) in ⟪Kθ⟫ we have

(
[α∗r1r2 ], r1r2

)
=
(
[r1(α∗r2)α∗r1 ], r1r2

)

=
(
[α∗r2α

∗
r1

], r1r2

)

=
(
[α∗r1αr1r1(αr2)∗α∗r1 ], r1r2

)

=
(
[α∗r1 ], r1

)(
[α∗r2 ], r2

)

and the latter is in ⟪Kθ⟫. The claim easily follows.

Remark 8.5.6. Lemma 8.5.5 is enough to show that many interesting examples of
warped systems have stable discrete fundamental group. Still, it also gives us means for
constructing warped system with unstable discrete fundamental group. For example, it
is well-known that there exists a finite set S ⊂ F2×F2 so that the generated subgroup
Γ = 〈S〉 < F2 × F2 is not finitely presented (see e.g.[BH13, Section III.Γ.5]). Consider
now any embedding of F2 × F2 in a compact Lie group G (e.g. an embedding in
G = SO(3,R) × SO(3,R)). This induces an embedding Γ ↪→ G and the isometric
action by left translation produces a warped system WSys

(
Γ y G

)
= WSys

(
FS y G

)

that, by Lemma 8.5.5, does not have stable discrete fundamental group.

8.5.2 Stability of stable discrete fundamental groups

The following lemma will be key for using discrete fundamental groups of warped
system (with stable discrete fundamental group) as a coarse invariant.

Lemma 8.5.7. Let WSys
(
FS y X

)
a warped system with stable discrete fundamental

group and let (Yk)k∈N be a sequence of 1-geodesic metric spaces. If (Yk)k∈N is coarsely
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equivalent to an unbounded sequence in WSys
(
FS y X

)
, then for every θ large enough

there exists a k̄ such that

π1,θ(Yk) ∼= π1,∞
(
FS y X

)
(8.6)

for every k ≥ k̄. In particular, if (Yk)k∈N is coarsely sub-equivalent to WSys
(
FS y X

)
,

then for every θ large enough (8.6) holds for infinitely many k ∈ N.

Proof. Let
(
X, δtkS

)
k∈N with tk →∞ be the sequence of spaces coarsely equivalent to

(Yk)k∈N and let L and A be the uniform constants of the quasi-isometries.
Since

(
FS y X

)
has stable fundamental group, there exists a θ̄ large enough so that

π1,θ

(
FS y X

) ∼= π1,∞
(
FS y X

)
for every θ ≥ θ̄. In particular, from Theorem 8.4.1 it

follows that for every θ ≥ θ̄ there exists n(θ) so that

π1,θ

(
X, δtkS

) ∼= π1,∞
(
FS y X

)

for every k ≥ n(θ). Then, for every k ∈ N and θ ≥ Lθ̄ + A, by Lemma 3.1.4 we have
a concatenation of surjections:

π1,θ̄

(
X, δtkS

)
π1,θ

(
Yk
)

π1,Lθ+A

(
X, δtkS

)
.

If k ≥ n(Lθ+A), it follows from the discussion above that in the following diagram
the maps are isomorphisms

π1,θ̄

(
X, δtkS

)
π1,Lθ+A

(
X, δtkS

)

π1,∞
(
FS y X

)

id∗

∼= ∼=

and in particular id∗ is an isomorphism. Hence by (iv) of Lemma 3.1.4 we deduce that

π1,θ(Yk) ∼= π1,∞
(
FS y X

)
.

Remark 8.5.8. Note in particular that Lemma 8.5.7 immediately implies that the
discrete fundamental group of the topology approximating graphs (with mesh small
enough) coincides with the asymptotic discrete fundamental group of the warped
system. This fact could also be proved by hand (and does not require the warped
system to have stable discrete fundamental group).

The above result can be further specialised in the study of coarse equivalences of
warped systems:
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Theorem 8.5.9. Let WSys
(
FS y X

)
and WSys

(
FT y Y

)
be two coarsely sub-equiv-

alent warped systems. If WSys
(
FS y X

)
has stable discrete fundamental group, then

WSys
(
FT y Y

)
has stable discrete fundamental group as well and

π1,∞
(
FS y X

) ∼= π1,∞
(
FT y Y

)
.

Proof. Let (tk)k∈N and (sk)k∈N be unbounded sequences such that the families of metric
spaces

(
X, δtkS

)
k∈N and

(
X, δskT

)
k∈N are coarsely equivalent, and let L and A be the

quasi-isometry constants of the coarse equivalence. Fix three parameters θ, θ′ and θ′′

satisfying θ′ ≥ Lθ+A and θ′′ ≥ L(Lθ′+A) +A. For every k ∈ N, the quasi-isometries
induce a concatenation of surjections

π1,θ

(
X, δtkS

)
π1,Lθ′+A

(
X, δtkS

)
π1,Lθ′′+A

(
X, δtkS

)

π1,θ′
(
Y, δskT

)
π1,θ′′

(
Y, δskT

)
.

If θ is large enough so that the projection π1,θ

(
FS y X

)
→ π1,∞

(
FS y X

)
is an

isomorphism, then we can argue as in the proof of Lemma 8.5.7 to deduce from
Lemma 3.1.4 and Theorem 8.4.1 that for every k large enough all the surjections above
are actually isomorphisms.

Since the composition map

π1,Lθ′+A

(
X, δtkS

)

π1,θ′
(
Y, δskT

)
π1,θ′′

(
Y, δskT

)

∼=∼=

is induced by a map that is A-close to the identity, we deduce that for every k large
enough (idY )∗ : π1,θ′

(
Y, δskT

)
→ π1,θ′′

(
Y, δskT

)
is an isomorphism. From this it follows

that WSys
(
FT y Y

)
also has stable discrete fundamental group.

Now, the fact that π1,∞
(
FS y X

)
is isomorphic to π1,∞

(
FT y Y

)
follows trivially

from Lemma 8.5.7.

Corollary 8.5.10. Let Γ = 〈S | R〉 be a finitely presented group and Λ = 〈T 〉 be finitely
generated. If there are free actions Γ y X and Λ y Y where π1(X) = π1(Y ) = {0}
so that the induced warped systems WSys

(
FS y X

)
and WSys

(
FT y Y

)
are coarsely

sub-equivalent, then Λ is also finitely presented and Γ ∼= Λ.
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Proof. By Lemma 8.5.5 the warped system WSys
(
FS y X

)
has stable discrete

fundamental group and hence by Theorem 8.5.9 the same is true for WSys
(
FT y Y

)

and π1,∞
(
FS y X

)
is isomorphic to π1,∞

(
FT y Y

)
. Again by Lemma 8.5.5 we deduce

that Λ is finitely presented, and by Corollary 8.4.8 we deduce that Γ ∼= Λ.

Remark 8.5.11. It is not clear to the author whether the group π1,∞
(
FS y X

)
is

a coarse invariant of warped systems that do not have stable discrete fundamental
group.

8.6 Warped systems and box spaces

Also in this section we have the standing assumption that warped systems are asymp-
totically jumping-geodesic and come from actions on compact semi-locally simply
connected metric spaces with homotopy rectifiable paths. Let Λ = 〈T | R〉 be a (not
necessarily finite) presentation of a finitely generated infinite group and, as before,
let Rθ be the subset of ⟪R⟫ of words of length at most 4θ and let Λθ be the finitely
presented group 〈T | Rθ〉. Note that we have a natural surjection Λθ → Λ.

8.6.1 A major obstruction

The rather peculiar fact that the discrete fundamental group of a warped system
does not depend meaningfully on the parameter t is noticeably dissimilar from what
Theorem 4.3.10 implies for box spaces. This suggest us to use Lemma 8.5.7 to prove
the following:

Theorem 8.6.1. Let Γ = 〈S | R〉 be an infinite finitely generated group. If a
normal residual nested box space �(Λk)Λ is coarsely sub-equivalent to a warped system
WSys

(
FS y X

)
, then WSys

(
FS y X

)
has stable discrete fundamental group if and

only if Λ is finitely presented.
Moreover, when this happens we must have Λk

∼= π1,∞
(
FS y X

)
for infinitely

many k ∈ N.

Proof. Let
(
X, δtkS

)
k∈N be coarsely equivalent to (a subsequence of) the box space.

Now the proof follows closely the proof of Theorem 8.5.9: assume that WSys
(
FS y X

)

has stable discrete fundamental group, let L and A be the quasi-isometry constants of
the coarse equivalence and let θ, θ′, θ′′ satisfy θ′ ≥ Lθ + A and θ′′ ≥ L(Lθ′ + A) + A.
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For every k ∈ N, the quasi-isometries induce a concatenation of surjections

π1,θ

(
X, δtkS

)
π1,Lθ′+A

(
X, δtkS

)
π1,Lθ′′+A

(
X, δtkS

)

π1,θ′
(
Cay(Λ/Λk, T )

)
π1,θ′′

(
Cay(Λ/Λk, T )

)

and just as in Theorem 8.5.9 we can deduce that if θ is large enough so that the
θ-discrete fundamental group of WSys

(
FS y X

)
stabilised, then for every k large

enough id∗ : π1,θ′
(
Cay(Λ/Λk, T )

)
→ π1,θ′′

(
Cay(Λ/Λk, T )

)
is an isomorphism.

From Theorem 4.3.10 we know that π1,θ′
(
Cay(Λ/Λk, T )

) ∼= (Λk)θ′ < Λθ′ and from
its proof it also follows that the map id∗ coincides with the quotient (Λk)θ′ → (Λk)θ′′

induced from Λθ′ → Λθ′′ .
Now, if ⟪R⟫ was strictly larger than ⟪Rθ′⟫ we could choose a relation r ∈ ⟪R⟫r

⟪Rθ′⟫. Choosing a θ′′ larger than |r|/4, we would find that r denotes an element in
the kernel of id∗ : (Λk)θ′ → (Λk)θ′′ for every k large enough. Still, since the sequence
Λk is residual, there must be a k large enough so that r is not trivial in (Λk)θ′ , and
this contradicts the fact that id∗ is an isomorphism.

Since Rθ is finite, we deduce that if WSys
(
FS y X

)
has stable discrete fundamental

group then Λ is finitely presented. The inverse implication is analogous.
The ‘moreover’ part of the statement follows immediately from Theorem 4.3.10

and Lemma 8.5.7.

Remark 8.6.2. In the proof of Theorem 8.6.1 we did not really need that that the
normal residual sequence Λk C Λ consists of nested subgroups. Indeed, we only need
that for every θ ∈ N there exists an n large enough so that Λk consists only of elements
of length larger than 4θ for every k ≥ n.

Moreover, the same proof works also for non-normal box spaces if one knows that
for every k large enough the group Λk does not have non-trivial elements conjugate to
elements of less than 4θ.

Theorem 8.6.1 implies that box spaces and warped systems tend to have very
different coarse geometry. We wish to give some examples of such differences in the
next two subsections.

8.6.2 Box spaces that are not coarsely-equivalent to warped
systems

It follows from Theorem 8.6.1 that for a normal residual nested box space of a finitely
presented group �(Λk)Λ to be coarsely sub-equivalent to a warped system it is necessary
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that the groups Λk be isomorphic for infinitely many k. Up to passing to a subsequence,
we can hence assume that they are isomorphic for every k. In the sequel we always
make this assumption.

Note that if Λ ∼= Fn is a free group, then the rank of the subgroup Λk is known
to be rk(Λk) = (n− 1)[Fn : Λk] + 1 and hence a bound on the rank of Λk implies a
bound on the index [Fn : Λk]. It follows that no normal nested residual box space of a
free group can be coarsely sub-equivalent to a warped system.

More in general, recall that the rank gradient of a residual filtration is defined as

RG(Λ, (Λk)k∈N) := lim
k→∞

rk(Λk)

[Λ : Λk]
.

Recall also that if Λ has fixed price p (for a definition and discussion see e.g. [Fur09]),
then every normal residual filtration has rank gradient p− 1.

Corollary 8.6.3. If Λ is finitely presented and it admits a normal nested residual box
space �(Nk)Λ that is coarsely sub-equivalent to a warped system then RG(Λ, (Nk)k∈N) =

0. In particular, if Λ has fixed price p > 1, then no such box space coarsely sub-equiva-
lent to a warped system.

A quite different reason for box spaces to not be coarsely equivalent to warped
systems goes as follows. Let Λ be a lattice in a simple Lie group G not locally
isomorphic to SL(2,R). Then the finite index subgroups Λk <f Λ are lattices as well
and hence the Mostow Rigidity Theorem applies. That is, if Λk is isomorphic to Λk′

then Λk and Λ′k are actually conjugate in G and hence G/Λk and G/Λk′ have the same
(finite) volume with respect to the Haar measure. Still, G/Λk is a cover of G/Λ of
rank [Λ : Λk] and hence it has volume Vol(G/Λk) = [Λ : Λk] Vol(G/Λ), which is again
implying an upper bound on the index in terms of the isomorphism class of Λk. We
hence proved the following:

Corollary 8.6.4. If Λ is lattice in a simple Lie group G not locally isomorphic to
SL(2,R), then no normal residual nested box space of Λ is coarsely sub-equivalent to a
warped system.

8.6.3 Warped systems that are not coarsely-equivalent to box
spaces

We already noted that the warped system WSys
(
F2 y S2

)
induced by an action by

rotations has stable discrete fundamental group and we have π1,∞
(
F2 y S2

)
= {e}.

It follows from Theorem 8.6.1 that if WSys
(
F2 y S2

)
was coarsely sub-equivalent to
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a normal nested residual box space then the quotienting groups Λk should be trivial
and hence Λ would have to be finite, a contradiction.

The argument above relies on the observation that, in that specific case, any group
having π1,∞

(
FS y X

)
as a finite index subgroup could not admit box spaces coarsely

equivalent to warped systems. This strategy can be applied in other cases as well:

Corollary 8.6.5. Assume that WSys
(
FS y X

)
has stable discrete fundamental group.

If every group Λ containing π1,∞
(
FS y X

)
as a finite index subgroup cannot have

normal nested residual box spaces coarsely sub-equivalent to a warped system, then
WSys

(
FS y X

)
is not coarsely equivalent to any normal nested box space.

In particular, this is the case when π1,∞
(
FS y X

)
is:

(a) a finite group;

(b) a non residually finite group;

(c) a non finitely presented group;

(d) a lattice in a high rank simple Lie group.

Proof. Case (a) is obvious and case (b) follows from the fact that we insist that
box spaces be generated by residual sequences and therefore the group Λ (and its
subgroups) would have to be residually finite.

Case (c) holds true as Theorem 8.6.1 implies that the group Λ should be finitely
presented, and therefore the same should be true for its finite index subgroups.

Case (d) follows from the fact that lattices in high rank Lie groups are rigid under
quasi-isometries [KL97]. This implies that a group Λ containing such a lattice as a
finite index subgroup would have to be itself a lattice and hence Corollary 8.6.4 would
apply.

Remark 8.6.6. By Corollary 8.4.7, to find examples of warped systems with stable
discrete fundamental group so that π1,∞

(
FS y X

)
is not residually finite it would be

enough to find a free action of a finitely presented but not residually finite group.
We feel that it should also be possible to find examples of warped systems with

stable fundamental group for which π1,∞
(
FS y X

)
is not finitely presented. Still,

Lemma 8.5.5 implies that we cannot hope to find such an example by considering free
actions on ‘pleasant’ compact spaces.
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As already hinted in Remark 8.6.2, many of the results listed so far can be somewhat
extended to box spaces that are not necessarily nested, normal or residual. We did not
do so to avoid unnecessary complications. Note however that if we are only interested
in nested sequences, we immediately have the following stronger result:

Corollary 8.6.7. Assume that WSys
(
FS y X

)
has stable discrete fundamental

group. If π1,∞
(
FS y X

)
does not contain a finite index normal subgroup isomorphic

to π1,∞
(
FS y X

)
itself ( i.e. it is co-Hopfian), then WSys

(
FS y X

)
is not coarsely

equivalent to any normal nested box space.11

We wish to remark here that many groups are co-Hopfian. See [vL17] for an
exhaustive study of such groups.

Note that if Γ y X is an action of a finitely generated group and S and T

are two finite sets of generators, then WSys
(
FS y X

)
and WSys

(
FT y X

)
are

naturally coarsely equivalent. Moreover, using Theorem 8.5.3 it is simple to prove
that π1,∞

(
FS y X

)
is naturally isomorphic to π1,∞

(
FT y X

)
.12 In view of these

facts, in what follows we feel justified to simply use the notation WSys
(
Γ y X

)
and

π1,∞
(
Γ y X

)
to denote the (coarse equivalence class) of the warped system induced

by Γ yM and the limit of its discrete fundamental groups.
One of the main results of [dLV17] is that the warped system WSys

(
Γd y SO(d,R)

)

is not coarsely equivalent to a box space of a lattice in a high rank semisimple algebraic
group (Theorem 8.3.6). We will now complete that result by showing that such a
warped system is not coarsely equivalent to any normal nested box space.

Assume that Γ be finitely presented, M has finite fundamental group and that
the action Γ y M be free and by isometries. Then Corollary 8.4.7 implies that
π1,∞

(
Γ y M

)
is virtually isomorphic to Γ (recall that two groups are virtually

isomorphic if they are equivalent under the equivalence relation induced by taking
quotients by finite subgroups or passing to a finite index subgroups). If WSys

(
Γ yM

)

is coarsely equivalent to a normal residual nested box space of Λ, it follows that Γ is
virtually isomorphic to Λ as well and, by Theorem 8.3.3, it is hence quasi-isometric
to Γ × Zdim(M), which is often not the case. For example, we immediately get the
following:

11Here we do not need to ask for the filtration to be residual. In fact, if Λk C Λ was a non-residual
filtration so that the box space �(Nk)Λ is coarsely sub-equivalent to the warped system, we would
deduce that WSys

(
FS y X

)
is coarsely sub-equivalent to a normal nested residual box space of the

quotient Λ = Λ/ ∩k∈N Λk.
12Here we could not just apply Theorem 8.5.9 because we are not assuming these warped systems

to have stable discrete fundamental group.
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Corollary 8.6.8. Let Γ y M be a free action by isometries of a finitely presented
group on a Riemannian manifold with finite fundamental group. If Γ either

• has polynomial growth;

• has property (T); or

• is Gromov hyperbolic;

then WSys
(
Γ yM

)
is not coarsely equivalent to any normal residual nested box space.

In particular, all the superexpanders obtained from the warped system WSys
(
Γd y

SO(d,R)
)
are not coarsely equivalent to any such box space.

We would like to remark that it is possible to prove the above statement about
virtual isomorphisms directly from Theorem 8.4.1 without passing through Corol-
lary 8.4.7 (and hence avoiding Proposition 4.3.8). We wish to do so explicitly, as we
think that this technique is interesting in its own right.

Theorem 8.6.9. Let Γ y M be a free action of a finitely generated group on a
compact manifold with finite fundamental group. Then π1,∞

(
Γ y M

)
is virtually

isomorphic to Γ.

Proof. Let 〈S | R〉 be a presentation of Γ and consider the universal cover M̃ →M .
For every s ∈ S, choose a lift s̃ to the universal cover:

M̃ M̃

M M

s̃

s

this induces an action ρ̃ : FS y M̃ and an associated warped system WSys
(
FS y M̃

)
.

Note now that ρ̃(R) is a subset of the group of deck transformations of M̃ , which
is a finite group by hypothesis. It follows that ker(ρ̃) is a subgroup of finite index of
⟪R⟫ ⊂ FS.

Let Γ̃ := FS/ ker(ρ̃) and note that Γ is the quotient of Γ̃ by the finite subgroup
⟪R⟫/ ker(ρ̃). Since Γ̃ y M̃ is a free action on a simply connected manifold, we can
apply Corollary 8.4.6 to the warped system WSys

(
Γ̃ y M̃

)
= WSys

(
FS y M̃

)
to

deduce that
π1,θ

(
FS y M̃

) ∼= Γ̃θ

where Γ̃θ is the group FS/⟪{w ∈ ker(ρ̃) | |w| ≤ 4θ}⟫.
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Note that at the level of jumping-fundamental groups it is simple to mimic the
theory of topological covers and deduce that for every t ∈ R+ there is an injection

FS ∼= JSΠ1

(
t · M̃

)
JSΠ1

(
t ·M

)

whose image is a subgroup of index (at most) |π1(M)| (this map coincides with the
natural inclusion FS ↪→ π1(M) o FS). In the above we added t to the notation to
remember that we are working with metrics scaled by t.

Since the quotient map M̃ →M is 1-Lipschitz with respect to the warped metrics
δtS, it follows from Theorem 4.2.2 that the above injection descends to a homomorphism
between the discrete fundamental groups via the discretisation procedure

JSΠ1

(
t · M̃

)
JSΠ1

(
t ·M

)

Γ̃θ π1,θ

(
M̃, δtS

)
π1,θ

(
M, δtS

)
̂ ̂

and that the image has index (at most) |π1(M)|.
Since the above homomorphisms do not depend on t (as long as t is large enough),

they induce a homomorphism of the direct systems as θ varies in N, and therefore
induce a limit homomorphism

Γ̃ ∼= lim−→ Γ̃θ −→ lim−→ π1,θ

(
M, δtS

)
= π1,∞

(
M, δtS

)

whose image is a finite index subgroup. Moreover, using Theorem 8.4.1 it is easy to
check that this limit homomorphism is actually injective, thus completing the proof.

8.6.4 Warped systems that are actually coarsely-equivalent to
box spaces

Despite all the examples provided above, warped systems over compact manifolds
and box spaces can be coarsely equivalent. The easiest example is probably the
following: let X = Td be the d-dimensional torus and consider the trivial warped
system WSys

(
{e} y Td

)
. It is then easy to see that (Td, δnS ) is just the torus

with the metric rescaled by n and it is hence quasi-isometric to the finite quotient(
Z/nZ

)d ∼= Zd/(nZ)d. That is, WSys
(
{e}y Td

)
is coarsely equivalent to a box space

of Zd.
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The above example can be made quite more interesting using a result of Kielak
and Sawicki. In [Saw17a, Appendix] they show that there exist (uncountably many)
actions Zk y Td by rotations such that WSys

(
Zk y Td

)
is coarsely equivalent to

WSys
(
{e}y Td+k

)
and it is hence coarsely equivalent to a box space of Zd+k.

Note that the above result cannot hold for every action by rotation Zk y Td.
Indeed, there exist actions by rotations on tori that produce non coarsely equivalent
warped systems (see [Kim06] and [Saw17a]).

If we do not require the nested sequence to be normal nor residual, we can obtain
other interesting examples such as the following:

Example 8.6.10. Let Λ := Z2 o SL(2,Z) where SL(2,Z) y Z2 is the natural action.
Note that kZ2 is a characteristic subgroup of Z2 and hence Nk := (kZ)2 o SL(2,Z) is
a (non-normal) subgroup of Λ. Moreover, it is simple to show that Nk

∼= Λ for every
k, so that the box space �NkΛ could be coarsely equivalent to some warped system,
and this is actually the case. Indeed, consider the natural action SL(2,Z2) y T2. It
is then a relatively simple task to check that the spaces (T2, δnS ) and Schrr(Nk\Λ, S)

are uniformly quasi-isometric.
The interest of this example is that the Schreier graphs Schrr(Nk\Λ, S) form a

family of expanders. Indeed, one can check that is nothing but Example 7.2.1 in
disguise. In particular, the warped system WSys

(
SL(2,Z) y T2

)
is as far as possible

from a nicely behaved warped system such as WSys
(
{e}y Td

)
.

We find it quite suggestive that this example of warped system coarsely equivalent
to a box space is obtained in an instance (the action on the torus) where the two
standard approaches for constructing approximanting graphs (choosing finer and finer
partitions vs. looking at sequences of covers) produce the same end result.
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Appendix A

Coarsely inequivalent expanders via
subsequences

We wish to point out that once an expander (Gn) is given, one can always construct a
continuum of non-coarsely equivalent expanders by carefully choosing subsequences of
it. Similar arguments are used in [Hum14, Theorem 2.8] and [KV17, Proposition 2].

Proposition. Let (Gn)n∈N be a family of finite graphs with uniformly bounded degree
and |Gn| → ∞. Then there exists a continuum I of subsets Ia ⊂ N such that for every
pair Ia 6= Ib in I, the subsequences (Gn)n∈Ia and (Gn)n∈Ib are not uniformly coarsely
equivalent.

Proof. Choosing a subsequence if necessary, we can assume that |Gn+1| > n|Gn| for
every n ∈ N. We claim that for every choice of control functions ρ− and ρ+ there is an
n0 large enough so that for all n > m > n0, the graphs Gn and Gm cannot be coarsely
equivalent with control functions ρ− and ρ+. Indeed, suppose that there exists such
a coarse equivalence f : Gn → Gm, and let r > 0 be large enough, so that ρ−(r) ≥ 1.
Then the pre-image f−1(v) of any vertex v ∈ Gm must have diameter at most r, and
it follows that f−1(v) has cardinality at most Dr+1, where D is the uniform bound
on the degree. In particular, we have m|Gm| < |Gn| ≤ Dr+1|Gm|. Hence, to prove the
claim, it is sufficient to let n0 = Dr+1.

It follows from the above discussion that if I and J are two subsets of N so that
I \ J is infinite, then the sequences (Gn)n∈I and (Gn)n∈J are not uniformly coarsely
equivalent. To conclude the proof, it is enough to observe that there exists an
uncountable family of sets Ia ⊂ N so that Ia \ Ib is infinite for every a 6= b.

If one makes some clever choices, it is possible to find an uncountable family I
of infinite subsets of N such that for any two Ia 6= Ib ∈ I the intersection Ia ∩ Ib
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is finite.1 In particular, it follows that it is always possible to find a continuum of
coarsely disjoint expanders.

Still, these examples are somewhat silly and do not encode what one would think
of as ‘being different expanders’. One possible way to overcome this issue could be
that one can ask a priori to compare only sequences of graphs where the size of the
nth graphs are (uniformly) comparable. In this case the vast control over cardinalities
allowed by our construction (Proposition 7.1.8) could be useful.

Note also that just by selecting subsequences of a given box space one cannot
produce a continuum of expanders that are not coarsely equivalent to any box space
(compare with Subsection 8.6), for the silly reason that a subsequence of a box space
still is a box space.

1There are some nice and concrete examples on Mathoverflow.
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Appendix B

Proofs for unified warped cones

We wish to report that some of the rigidity results that we proved for warped systems
hold in the case of warped cones (as by Definition 8.1.14) as well.

For example, it is straightforward to modify the proofs of Lemma 8.3.1 and Theorem
8.3.3 in order to prove that under the same hypotheses (i.e. essentially free actions
by isometries on compact manifolds) if the warped cones OΓ(M) and OΛ(N) are
quasi-isometric, then Γ× Zdim(M)+1 is quasi-isometric to Λ× Zdim(N)+1.

One can hence use the techniques of Subsection 8.3.3 to produce examples of warped
cones that are not coarsely equivalent. As already discussed in Subsection 8.2.2, this
does not immediately follow from the analoguous results for warped systems.

Also the techniques involving the use of discrete fundamental groups translate
fairly well to this setting. Before doing so we need some new notation: as in the
introduction, we denote the t-level of a warped cone X × {t} ⊂ OS(X) by OtS(X).
Further, for 1 ≤ a ≤ b <∞ we will denote by O[a,b]

S (X) the subset X × [a, b] ⊆ OS(X)

with the induced metric.
As in the the last few sections, we still assume the space X to be a ‘nice’ compact

space and WSys
(
S y X

)
to be jumping-geodesic. For any fixed θ ≥ 1, it is easy

to show that for t� 0 large enough π1,θ

(
OtS(X)

) ∼= π1,θ

(
X, δtS

)
. Moreover it is also

simple to prove the following lemma:

Lemma. For every θ ≥ 1 there exists a t0 large enough so that for every t0 ≤ a ≤
t ≤ b ≤ ∞ the natural inclusion and projection

OtS(X) O[a,b]
S (X) OtS(X)ι p

induce isomorphisms

π1,θ

(
OtS(X)

)
π1,θ

(
O[a,b]
S (X)

)
π1,θ

(
OtS(X)

)ι∗ p∗
.
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This lemma allows us to mimic the proof of Theorem 8.5.9 in the context of warped
cones.

Theorem. If WSys
(
FS y X

)
has stable discrete fundamental group and OS(X) is

quasi-isometric to OT (Y ) then WSys
(
FT y Y

)
has stable discrete fundamental group

and π1,∞
(
FS y X

) ∼= π1,∞
(
FT y Y

)
.

Sketch of proof. Let f : OS(X) → OT (Y ) be an (L,A)-quasi-isometry and let f̄ be
the coarse inverse. Also, fix three parameters θ, θ′ and θ′′ satisfying θ ≥ L + A,
θ′ ≥ Lθ + A and θ′′ ≥ L(Lθ′ + A) + A with θ large enough so that the projection
π1,θ

(
FS y X

)
→ π1,∞

(
FS y X

)
is an isomorphism.

For every a� 1 there exists c, b� 1 such that

f
(
O[c,∞]
S (X)

)
⊆ O[b,∞]

T (Y ) and f̄
(
O[b,∞]
T (Y )

)
⊆ O[a,∞]

S (X).

By the lemma above, we can deduce that both

f∗ : π1,θ

(
O[c,∞]
S (X)

)
−→ π1,θ′

(
O[b,∞]
T (Y )

)

and
f̄∗ : π1,θ′

(
O[b,∞]
T (Y )

)
−→ π1,Lθ′+A

(
O[a,∞]
S (X)

)

are surjective. Indeed, every θ′-path Z in O[b,∞]
T (Y ) is equivalent to a 1-path in a level

set which is sufficiently high up so that its image under f̄ is a θ-path in O[c,∞]
S (X).

This θ-path is then is mapped to [Z] by f∗. The same argument works for f̄∗ as well.
We can now find parameters a > a′ > a′′ � 1 and b > b′ � 1 so that the following

composition of maps make sense and it induces a commutative diagram:

π1,θ

(
OaS(X)

)
π1,Lθ′+A

(
OaS(X)

)
π1,Lθ′′+A

(
OaS(X)

)

π1,θ

(
O[a,∞]
S (X)

)
π1,Lθ′+A

(
O[a′,∞]
S (X)

)
π1,Lθ′′+A

(
O[a′′,∞]
S (X)

)

π1,θ′
(
O[b,∞]
T (Y )

)
π1,θ′′

(
O[b′,∞]
T (Y )

)

π1,θ′
(
ObT (Y )

)
π1,θ′′

(
ObT (Y )

)

ι∗ ι∗

f∗ f∗

p∗ p∗

f̄∗ f̄∗

p∗ι∗

.

To conclude, note that the dashed homomorphisms are induced by functions that
are close to the identity and that ι∗ and p∗ are isomorphisms. Then observe that
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Lemma 3.1.4 implies that the maps f∗ are also injective and hence all the maps are
isomorphisms.
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